Twisted Diffusion Sampling for Accurate
Conditional Generation, with Application to
Protein Design

Brian L. Trippe
Columbia University, Department of Statistics

July 19, 2023

Conditional Sampling for Protein Binder Design

Diffusion models generate protein binders with 10 — 100x higher
success rates than previous methods [WJBTY+, 2022]

1/18

Conditional Sampling for Protein Binder Design
Diffusion models generate protein binders with 10 — 100x higher
success rates than previous methods [WJBTY+, 2022]

RMSD =0.63 A
N\

Key idea: Learn model of protein structure, design by sampling
from conditional distributions

1/18

Conditional Sampling for Protein Binder Design
Diffusion models generate protein binders with 10 — 100x higher
success rates than previous methods [WJBTY+, 2022]

RMSD =0.63 A
N\

."i._-g{’\./}: () D 3 @
ad RFdiffusion generated binding protein
Key idea: Learn model of protein structure, design by sampling
from conditional distributions

Challenge: analytical intractability of exact conditionals

1/18

Conditional Sampling for Protein Binder Design
Diffusion models generate protein binders with 10 — 100x higher
success rates than previous methods [WJBTY+, 2022]

RMSD =0.63 A

Key idea: Learn model of protein structure, design by sampling
from conditional distributions
Challenge: analytical intractability of exact conditionals

» Heuristic guidance [reconstruction & replacement]: inaccurate

1/18

Conditional Sampling for Protein Binder Design
Diffusion models generate protein binders with 10 — 100x higher
success rates than previous methods [WJBTY+, 2022]

Key idea: Learn model of protein structure, design by sampling
from conditional distributions
Challenge: analytical intractability of exact conditionals
» Heuristic guidance [reconstruction & replacement]: inaccurate
» Conditional training: time-consuming

1/18

Conditional Sampling for Protein Binder Design
Diffusion models generate protein binders with 10 — 100x higher
success rates than previous methods [WJBTY+, 2022]

Key idea: Learn model of protein structure, design by sampling
from conditional distributions
Challenge: analytical intractability of exact conditionals
» Heuristic guidance [reconstruction & replacement]: inaccurate
» Conditional training: time-consuming, (inaccurate)

1/18

Conditional Sampling for Protein Binder Design
Diffusion models generate protein binders with 10 — 100x higher
success rates than previous methods [WJBTY+, 2022]

Key idea: Learn model of protein structure, design by sampling
from conditional distributions
Challenge: analytical intractability of exact conditionals
» Heuristic guidance [reconstruction & replacement]: inaccurate
» Conditional training: time-consuming, (inaccurate)
We provide: Sequential Monte Carlo for conditional generation.

1/18

Conditional Sampling for Protein Binder Design

Diffusion models generate protein binders with 10 — 100x higher
success rates than previous methods [WJBTY+, 2022]

Key idea: Learn model of protein structure, design by sampling

from conditional distributions

Challenge: analytical intractability of exact conditionals
» Heuristic guidance [reconstruction & replacement]: inaccurate
» Conditional training: time-consuming, (inaccurate)

We provide: Sequential Monte Carlo for conditional generation.
» Asymptotically exact (in compute cost), general, and delivers

state of the art in silico success rates in protein design.
1/18

Roadmap

» Diffusion models and conditional generation
» The Twisted Diffusion Sampler (TDS)

> Related work

» Properties of TDS (Theory and Simulations)
» Case study in motif-scaffolding

Diffusion Set-Up and Notation

» Goal: estimation of g(x°) from samples.

2/18

Diffusion Set-Up and Notation

» Goal: estimation of g(x°) from samples.
> Noising process: q(x%7) = q(x°) [I_; a(xt | x*1)
> g(xt | xt) =Nt xtho?) fort=1,..., T

2/18

Diffusion Set-Up and Notation

» Goal: estimation of g(x°) from samples.

» Noising process: q(x%T) = q(xo) 1, a(xt | xt1)
Pq(xt|xt = (t|x o?)fort=1,...,T
> gx) = [N |22, t0?)q(x0)

2/18

Diffusion Set-Up and Notation

» Goal: estimation of g(x°) from samples.

> Noising process: q(x%7) = q(x°) [I_; a(xt | x*1)
> q(Xt|xt B=NKxt|xt7 o) fort=1,...,T
> g(x) = [N(x'|x° to?)q(x°)dx°

> Idea: generate new samples by “reversing” g
> xT ~ q(x7)
> xt=1 o g(xtxt)

2/18

Diffusion Set-Up and Notation

» Goal: estimation of g(x°) from samples.
> Noising process: q(x%7) = q(x°) [I_; a(xt | x*1)
> q(Xt|xt B=NKxt|xt7 o) fort=1,...,T
> g(x) = [N(x'|x° to?)q(x°)dx°
> Idea: generate new samples by “reversing” g... approximately
> X7~ g(x")
> Xt g(xtLxt)

2/18

Diffusion Set-Up and Notation

» Goal: estimation of g(x°) from samples.
> Noising process: q(x%7) = q(x°) [I_; a(xt | x*1)
> q(Xt|xt B=NKxt|xt7 o) fort=1,...,T
> g(x) = [N(x'|x° to?)q(x°)dx°
> Idea: generate new samples by “reversing” g... approximately
> xT ~q(x") = N(0, To?)
> Xt g(xtLxt)

2/18

Diffusion Set-Up and Notation

» Goal: estimation of g(x°) from samples.
> Noising process: q(x%7) = q(x°) [I_; a(xt | x*1)
> q(xt|xt B=NKxt|xt7 o) fort=1,...,T
> g(x) = [N(x'|x° to?)q(x°)dx°
> Idea: generate new samples by “reversing” g... approximately
> xT ~q(x") = N(0, To?)
> Xt g(xtLxt)

» Two approximations for g(xt~1 | xt):

2/18

Diffusion Set-Up and Notation

» Goal: estimation of g(x°) from samples.
> Noising process: q(x%7) = q(x°) [I_; a(xt | x*1)
> q(xt|xt_1)— N(xt | xt7Y o?)fort=1,...,T
> g(x) = [N(x'|x° to?)q(x°)dx°
> Idea: generate new samples by “reversing” g... approximately
> x" ~q(xT) ~ N(0, To?)
> xt7l v g(xt L x)N (xt L x +02V log g(x*), 02)
» Two approximations for g(xt~1 | xt):
1. Gaussian approximation (via Bayes' rule + Taylor's theorem)

2/18

Diffusion Set-Up and Notation

» Goal: estimation of g(x°) from samples.
> Noising process: q(x%7) = q(x°) [I_; a(xt | x*1)
> q(xt|xt_1)— N(xt | xt7Y o?)fort=1,...,T
> g(x) = [N(x'|x° to?)q(x°)dx°
> Idea: generate new samples by “reversing” g... approximately
> x" ~q(xT) ~ N(0, To?)
> xt71 v g(xt 1 xt) = N(xt Y xT+02 V log g(xt), 02)
» Two approximations for g(xt~1 | x?):
1. Gaussian approximation (via Bayes’ rule + Taylor's theorem)

2/18

Diffusion Set-Up and Notation

» Goal: estimation of g(x°) from samples.
> Noising process: q(x%7) = q(x°) [I_; a(xt | x*1)
> q(xt|xt_1)— N(xt | xt7Y o?)fort=1,...,T
> g(x) = [N(x'|x° to?)q(x°)dx°
> Idea: generate new samples by “reversing” g... approximately
> xT ~ q(xT) ~ N(0, To?)
> xt71 v g(xt 1 xt) = N(xt Y xT+02 V log g(xt), 02)
» Two approximations for g(xt~1 | x?):

1. Gaussian approximation (via Bayes’ rule + Taylor's theorem)
2. Tweedie's rule: Vlog q(xt)=(E4[x°|x!]—xt)/to?

2/18

Diffusion Set-Up and Notation

» Goal: estimation of g(x°) from samples.
> Noising process: q(x%7) = q(x°) [I_; a(xt | x*1)
> q(xt|xt_1)— N(xt | xt7Y o?)fort=1,...,T
> g(x) = [N(x'|x° to?)q(x°)dx°
> Idea: generate new samples by “reversing” g... approximately
> xT ~ q(xT) ~ N(0, To?)
> xt7l v g(xt 1 xt) & N(xF L xT 402V log g(x?), 02)
» Two approximations for g(xt~1 | xt):

1. Gaussian approximation (via Bayes' rule + Taylor's theorem)
2. Tweedie's rule: Vlog q(x*)=(Eq[x°|x*] —x!)/tc?

2/18

Diffusion Set-Up and Notation

» Goal: estimation of g(x°) from samples.

> Noising process: q(x%7) = q(x°) [I_; a(xt | x*1)
> q(xt|xt_1)— N(xt | xt7Y o?)fort=1,...,T
> g(x) = [N(x'|x° to?)q(x°)dx°

> Idea: generate new samples by “reversing” g... approximately
> x" ~q(xT) ~ N(0, To?)
> xt7l v g(xt 1 xt) & N(xF L xT 402V log g(x?), 02)

» Two approximations for g(xt~1 | xt):
1. Gaussian approximation (via Bayes' rule + Taylor's theorem)
2. Tweedie's rule: Vlog q(x*)=(Eq[x°|x*] —x!)/tc?

> Train %p(x", t) = E4[x°|x"] (via“denoising score matching”)

2/18

Diffusion Set-Up and Notation

» Goal: estimation of g(x°) from samples.

> Noising process: q(x%7) = q(x°) [I_; a(xt | x*1)
> q(xt|xt_1)— N(xt | xt7Y o?)fort=1,...,T
> g(x) = [N(x'|x° to?)q(x°)dx°

> Idea: generate new samples by “reversing” g... approximately
> x" ~q(xT) ~ N(0, To?)
> xt7l v g(xt 1 xt) & N(xF L xT 402V log g(x?), 02)

» Two approximations for g(xt~1 | xt):
1. Gaussian approximation (via Bayes' rule + Taylor's theorem)
2. Tweedie's rule: V log g(x*)~(Rg(x*) —x*)/to?

> Train %p(x", t) = E4[x°|x"] (via“denoising score matching”)

2/18

Diffusion Set-Up and Notation

» Goal: estimation of g(x°) from samples.

> Noising process: q(x%7) = q(x°) [I_; a(xt | x*1)
> q(xt|xt_1)— N(xt | xt7Y o?)fort=1,...,T
> g(x) = [N(x'|x° to?)q(x°)dx°

> Idea: generate new samples by “reversing” g... approximately
> x" ~q(xT) ~ N(0, To?)
> xt7l v g(xt 1 xt) & N(xF L xT 402V log g(x?), 02)

» Two approximations for g(xt~1 | xt):
1. Gaussian approximation (via Bayes' rule + Taylor's theorem)
2. Tweedie's rule: Vlog g(x!) ~ (Rp(xt)—x?)/to? =: sp(x?)

> Train %p(x", t) = E4[x°|x"] (via“denoising score matching”)

2/18

Diffusion Set-Up and Notation

» Goal: estimation of g(x°) from samples.

> Noising process: q(x%7) = q(x°) [I_; a(xt | x*1)
> q(xt|xt_1)— N(xt | xt7Y o?)fort=1,...,T
> g(x) = [N(x'|x° to?)q(x°)dx°

> Idea: generate new samples by “reversing” g... approximately
> xT ~ q(xT) ~ N(0, To?)
» Xt—l ~ q(Xt—l‘Xt) %N(Xt_1|Xt+0'250(Xt)70'2)

» Two approximations for g(xt~1 | x?):
1. Gaussian approximation (via Bayes’ rule + Taylor's theorem)
2. Tweedie's rule: Vlog g(xt) ~ (Rp(xt)—x?)/to? =: sp(x?)

> Train %5(x%, t) = E4[x°|x"] (via“denoising score matching”)

2/18

Diffusion Set-Up and Notation

» Goal: estimation of g(x°) from samples.
> Noising process: q(x%7) = q(x°) [I_; a(xt | x*1)
> q(xt|xt_1)— N(xt | xt7Y o?)fort=1,...,T
> g(x) = [N(x'|x° to?)q(x°)dx°
> Idea: generate new samples by “reversing” g... approximately
> xT ~ q(xT) ~ N(0, To?)
» Xt—l ~ q(Xt—l‘Xt) %N(Xt_1|xt+0'2$9(xt),0'2)
» Two approximations for g(xt~1 | xt):

1. Gaussian approximation (via Bayes' rule + Taylor's theorem)
2. Tweedie's rule: Vlog g(xt) = (R9(xt)—x*)/ta? =: sp(x?)

> Train %p(x%, t) = E4[x°|x"] (via“denoising score matching”)

2/18

Diffusion Set-Up and Notation

v

Goal: estimation of g(x°) from samples.
> Noising process: q(x%7) = q(x°) [I_; a(xt | x*1)
> q(xt|xt_1)— N(xt | xt7Y o?)fort=1,...,T
> g(x) = [N(x'|x° to?)q(x°)dx°
> Idea: generate new samples by “reversing” g... approximately
> xT ~ q(xT) ~ N(0, To?)
» Xt—l ~ q(Xt—l‘Xt) %N(Xt_1|xt+0'2$9(xt),0'2)
» Two approximations for g(xt~1 | xt):

1. Gaussian approximation (via Bayes' rule + Taylor's theorem)
2. Tweedie's rule: Vlog g(xt) = (R9(xt)—x*)/ta? =: sp(x?)

> Train %p(x%, t) = E4[x°|x"] (via“denoising score matching”)

> Diffusion model: pg(x®T) = pg(xT) TI,_; po(x*~1 | x*)

2/18

Diffusion Set-Up and Notation

» Goal: estimation of g(x°) from samples.
> Noising process: q(x%7) = q(x°) [I_; a(xt | x*1)
> q(xt|xt_1)— N(xt | xt7Y o?)fort=1,...,T
> g(x) = [N(x'|x° to?)q(x°)dx°
> Idea: generate new samples by “reversing” g... approximately
> xT ~q(x™) =~ N(0, To?):= pg(x")
> 1 gt Txt) m N o2y (), 02) =t py(=)
» Two approximations for g(xt~1 | x%):
1. Gaussian approximation (via Bayes’ rule + Taylor's theorem)
2. Tweedie's rule: Vlog g(xt) ~ (Kp(x*)—xt)/to? =: sp(x*)

> Train R5(x%, t) = E4[x°|x"] (via“denoising score matching”)

» Diffusion model: py(x®7) = pp(xT) T1/_; po(x*~1 | x*¥)

2/18

Importance Sampling for Controlled Generation

Goal: Generate x° in response to conditioning criteria y

3/18

Importance Sampling for Controlled Generation

Goal: Generate x° in response to conditioning criteria y

1. Augment pg with y, let pg(x® T, y) = po(x*T)p(y | x°)

3/18

Importance Sampling for Controlled Generation

Goal: Generate x° in response to conditioning criteria y

1. Augment pg with y, let pg(x%7T,y) = pp(x%) p(y | x°)
2. Given y ~ p(y!xo), compute Pe(XO:Tb’) -

3/18

Importance Sampling for Controlled Generation

Goal: Generate x° in response to conditioning criteria y
1. Augment pg with y, let pg(x® T, y) = po(x*T)p(y | x°)

2. Given y ~ p(y|x?), compute py(x%T[y) o< po(x*T)p(y | x°) .

3/18

Importance Sampling for Controlled Generation

Goal: Generate x° in response to conditioning criteria y
1. Augment pg with y, let pg(x® T, y) = po(x*T)p(y | x°)
%Tly) o< po(x*T) p(y | x°).
——— ——
target(v) proposal(p) weight(w)

2. Given y ~ p(y|x%), compute py(x

Idea: Importance sampling for target v(x)

» Choose proposal: p(x), and weights: w(x) o v(x)/p(x)

3/18

Importance Sampling for Controlled Generation

Goal: Generate x° in response to conditioning criteria y
1. Augment pg with y, let pg(x® T, y) = po(x*T)p(y | x°)
%Tly) o< po(x*T) p(y | x°).
——— ——
target(v) proposal(p) weight(w)

2. Given y ~ p(y|x%), compute py(x

Idea: Importance sampling for target v(x)
» Choose proposal: p(x), and weights: w(x) o< v(x)/p(x)

Key property: Let Py = Zszl Widy, , With Xxj " p and
wx = w(xk)/ > w(xk). If w(-) is bounded, Px — v as K — oo.

3/18

Importance Sampling for Controlled Generation

Goal: Generate x° in response to conditioning criteria y

1. Augment pg with y, let pg(x® T, y) = po(x*T)p(y | x°)

2. Given y ~ p(y|x%), compute pg(x%T|y
target(v) proposal(p) weight(w)

Idea: Importance sampling for target v(x)

» Choose proposal: p(x), and weights: w(x) o v(x)/p(x)

Key property: Let Py = Zszl Widy, , With Xxj " p and

wx = w(xk)/ > w(xk). If w(-) is bounded, Px — v as K — oo.

(i.e. VA, Klim Pk (A) = [, v(x)dx with prob. 1)

—00

) < po(x¥T) ply | x°).
——— ——

3/18

Efficiency of Importance Sampling

Problem: Need O(exp{KL(p || p)}) samples [Chatterjee and
Diaconis, 2018]

4/18

Efficiency of Importance Sampling

Problem: Need O(exp{KL(p || p)}) samples [Chatterjee and
Diaconis, 2018]
Example: # samples needed for class-conditional generation

4/18

Efficiency of Importance Sampling

Problem: Need O(exp{KL(p || p)}) samples [Chatterjee and
Diaconis, 2018]
Example: # samples needed for class-conditional generation

> Proposal: p(x) = pg(x®T) is MNIST diffusion model
» Weight: py(y | x°) is classifier for y € {0,...,9},
» Target: pg(x°|y) is images of class y

4/18

Efficiency of Importance Sampling

Problem: Need O(exp{KL(p || p)}) samples [Chatterjee and
Diaconis, 2018]
Example: # samples needed for class-conditional generation

> Proposal: p(x) = pg(x®T) is MNIST diffusion model
» Weight: py(y | x°) is classifier for y € {0,...,9},

» Target: pg(x°|y) is images of class y

» What is exp{KL(pa(x%T | y) || pa(x®T))}?

4/18

Efficiency of Importance Sampling

Problem: Need O(exp{KL(p || p)}) samples [Chatterjee and
Diaconis, 2018]
Example: # samples needed for class-conditional generation

> Proposal: p(x) = pg(x®T) is MNIST diffusion model
» Weight: py(y | x°) is classifier for y € {0,...,9},

» Target: pg(x°|y) is images of class y

» What is exp{KL(po(x%T | y) || po(x*T))}? [=10.

4/18

Efficiency of Importance Sampling

Problem: Need O(exp{KL(p || p)}) samples [Chatterjee and
Diaconis, 2018]
Example: # samples needed for class-conditional generation

> Proposal: p(x) = pg(x®T) is MNIST diffusion model
» Weight: py(y | x°) is classifier for y € {0,...,9},

» Target: pg(x°|y) is images of class y

> What is exp{KL(pg(x%7T | y) || po(x*T))}? = 10.

KL(ps(x*T1y) || po(x*T)) = /Pe(XO:TIy) log p((0T|§)d 0:T

4/18

Efficiency of Importance Sampling

Problem: Need O(exp{KL(p || p)}) samples [Chatterjee and
Diaconis, 2018]
Example: # samples needed for class-conditional generation

> Proposal: p(x) = pg(x®T) is MNIST diffusion model
» Weight: py(y | x°) is classifier for y € {0,...,9},

» Target: pg(x°|y) is images of class y

> What is exp{KL(pg(x%7T | y) || po(x*T))}? = 10.

XO:T .
KL(pg(x*T|y) || pa(x*T)) = /pe(XO:TIy) log de”

4/18

Efficiency of Importance Sampling

Problem: Need O(exp{KL(p || p)}) samples [Chatterjee and
Diaconis, 2018]
Example: # samples needed for class-conditional generation

> Proposal: p(x) = pg(x®T) is MNIST diffusion model
» Weight: py(y | x°) is classifier for y € {0,...,9},

» Target: pg(x°|y) is images of class y

> What is exp{KL(pg(x%7T | y) || po(x*T))}? = 10.

X0 .
KL(po (6 T1y) 1| 2o(0T) = [a1y log de”

4/18

Efficiency of Importance Sampling

Problem: Need O(exp{KL(p || p)}) samples [Chatterjee and
Diaconis, 2018]
Example: # samples needed for class-conditional generation

> Proposal: p(x) = pg(x®T) is MNIST diffusion model
» Weight: py(y | x°) is classifier for y € {0,...,9},

» Target: pg(x°|y) is images of class y

> What is exp{KL(pg(x%7T | y) || po(x*T))}? = 10.

KL(PG(XO:T‘)’) H pe(XO:T)) — /PG(XO‘)/) log ng)((zl)))/) dx®

4/18

Efficiency of Importance Sampling

Problem: Need O(exp{KL(p || p)}) samples [Chatterjee and
Diaconis, 2018]
Example: # samples needed for class-conditional generation

> Proposal: p(x) = pg(x®T) is MNIST diffusion model
» Weight: py(y | x°) is classifier for y € {0,...,9},
» Target: pg(x°|y) is images of class y
> What is exp{KL(pg(x%7T | y) || po(x*T))}? = 10.
0
. . Po
KL 1) | 2o) = [o2l tog 2207 X ot

0 (Y\X) 0
~ [ps?1y) 10g ? L

4/18

Efficiency of Importance Sampling

Problem: Need O(exp{KL(p || p)}) samples [Chatterjee and
Diaconis, 2018]
Example: # samples needed for class-conditional generation

> Proposal: p(x) = pg(x®T) is MNIST diffusion model
» Weight: py(y | x°) is classifier for y € {0,...,9},

» Target: pg(x°|y) is images of class y

> What is exp{KL(pg(x%7T | y) || po(x*T))}? = 10.

‘|

KL(PQ(XO:TW) H pe(XO:T)) — /PO(XO‘Y) log p;i)((x()})/) dx®
)

- O o p(y[x°
- / Po(?1y) log 2%

= Ep, [log p(y|x°) | y] — log ps(y)

dx®

4/18

Efficiency of Importance Sampling

Problem: Need O(exp{KL(p || p)}) samples [Chatterjee and
Diaconis, 2018]
Example: # samples needed for class-conditional generation

> Proposal: p(x) = pg(x®T) is MNIST diffusion model
» Weight: py(y | x°) is classifier for y € {0,...,9},

» Target: pg(x°|y) is images of class y

> What is exp{KL(pg(x%7T | y) || po(x*T))}? = 10.

0
KL(ps(® T |y) Hpe(xoiT)):/ 0(x°]y) log ;(X(’)y))dx
|x

—/Pa(XO|Y)|°g PI) o0
Po(y)

= Epy[log p(yx°) | ¥] — log pa(y)

4/18

Efficiency of Importance Sampling

Problem: Need O(exp{KL(p || p)}) samples [Chatterjee and
Diaconis, 2018]
Example: # samples needed for class-conditional generation

> Proposal: p(x) = pg(x®T) is MNIST diffusion model
» Weight: py(y | x°) is classifier for y € {0,...,9},

» Target: pg(x°|y) is images of class y

> What is exp{KL(pg(x%7T | y) || po(x*T))}? = 10.

KL(pa(XO:T’y) H PQ(XO:T)) _ /PQ(XOD/) log p;g)(i(‘));)dxo

. 0 P(Y|XO) 5 O
- / (L) log 22

~ Ep,[log p(y|x°) | y] —log 1/10

4/18

Efficiency of Importance Sampling

Problem: Need O(exp{KL(p || p)}) samples [Chatterjee and
Diaconis, 2018]
Example: # samples needed for class-conditional generation

> Proposal: p(x) = pg(x®T) is MNIST diffusion model
» Weight: py(y | x°) is classifier for y € {0,...,9},

» Target: pg(x°|y) is images of class y

> What is exp{KL(pg(x%7T | y) || po(x*T))}? = 10.

KL(po(x T ly) || po(x*T)) = /p"(xo‘y) o8 dexo

. 30 P(}’\XO) 5 O
— / p(oly)log 227

~ Ep,[log p(y|x°) |] +log 10

4/18

Efficiency of Importance Sampling

Problem: Need O(exp{KL(p || p)}) samples [Chatterjee and
Diaconis, 2018]
Example: # samples needed for class-conditional generation

> Proposal: p(x) = pg(x®T) is MNIST diffusion model
» Weight: py(y | x°) is classifier for y € {0,...,9},

» Target: pg(x°|y) is images of class y

> What is exp{KL(pg(x%7T | y) || po(x*T))}? = 10.

‘|

KL(PQ(XO:TD/) H pe(XO:T)) — /PO(XOD/) log p;i)(;o))/) dx®
)

- O o p(y[x°
- / P?1y) 1o 2%

~ Ep,[log p(y|x°) | y] + log 10

dx?

4/18

Efficiency of Importance Sampling

Problem: Need O(exp{KL(p || p)}) samples [Chatterjee and
Diaconis, 2018]
Example: # samples needed for class-conditional generation

> Proposal: p(x) = pg(x®T) is MNIST diffusion model
» Weight: py(y | x°) is classifier for y € {0,...,9},
» Target: pg(x°|y) is images of class y
> What is exp{KL(pg(x%7T | y) || po(x*T))}? = 10.
0
. . Po
KL 1) | 2o) = [o2l tog 2207 X ot

0 (Y\X) 0
~ [ps?1y) 10g ? L

~ Ep,[log1] + log 10

4/18

Efficiency of Importance Sampling

Problem: Need O(exp{KL(p || p)}) samples [Chatterjee and
Diaconis, 2018]
Example: # samples needed for class-conditional generation

> Proposal: p(x) = pg(x®T) is MNIST diffusion model
» Weight: py(y | x°) is classifier for y € {0,...,9},
» Target: pg(x°|y) is images of class y
> What is exp{KL(pg(x%7T | y) || po(x*T))}? = 10.
0
. . Po
KL 1) | 2o) = [o2l tog 2207 X ot
yIx°)

— [Iy og (M ®
~ log 10

4/18

Efficiency of Importance Sampling

Problem: Need O(exp{KL(p || p)}) samples [Chatterjee and

Diaconis, 2018]

Example: # samples needed for class-conditional generation

> Proposal: p(x) = pg(x®T) is MNIST diffusion model
» Weight: py(y | x°) is classifier for y € {0,...,9},

» Target: pg(x°|y) is images of class y

> What is exp{KL(pg(x%7T | y) || po(x*T))}? = 10.

KL(pr (O T1y) || 2o T)) = [o1y tog 22
y1x0)

— [Iy og (e(y)
~ log 10

Intuition: Roughly 1 in 10 samples will be digit y

po(x°ly)

dx®

dx°

4/18

A Better Twisted Proposal for Importance Sampling

Ideal proposal: py(x%7|y)

5/18

A Better Twisted Proposal for Importance Sampling

Ideal proposal: py(x%7|y)
Challenge: intractable, approximate with some gy(x%7|y) :

5/18

A Better Twisted Proposal for Importance Sampling

. T —
Ideal proposal: py(x* 7 |y)=py(x"|y) [T,=; po(x*[x%,y)
Challenge: intractable, approximate with some gy(x%T|y) :

5/18

A Better Twisted Proposal for Importance Sampling

Ideal proposal: py(x®7|y)=pa(xT|y) [1_; po(x*1|xt, y)
Challenge: intractable, approximate with some gy(x%T|y) :

5/18

A Better Twisted Proposal for Importance Sampling

Ideal proposal: py(x®7|y)=pa(xT|y) [1_; po(x*1|xt, y)
Challenge: intractable, approximate with some gy(x%T|y) :

> Bo(xTly) = po(xT) = po(xT | y)

5/18

A Better Twisted Proposal for Importance Sampling

. T —
Ideal proposal: py(x* 7 |y)=py(x"|y) [T,=; po(x*[x%,y)
Challenge: intractable, approximate with some gy(x%T|y) :

> Bo(xTly) = po(xT) = po(xT | y)

5/18

A Better Twisted Proposal for Importance Sampling

Ideal proposal: py(x*7|y)=py(x"|y) TT_; pa(x=2[xt, y)
Challenge: intractable, approximate with some gy(x%T|y) :

> Bo(xTly) = po(xT) = po(xT | y)

5/18

A Better Twisted Proposal for Importance Sampling
Ideal proposal: py(x*7|y)=ps(x"|y) [T, pa(x*=xt,y)
Challenge: intractable, approximate with some gy(x%T|y) :

> Bo(xTly) = po(xT) = po(xT | y)
> Bo(x XY y): =N (XX 0% [sp(x") + Ve log po(y[x")], o)
where Fp(y | x*) = pyxo(y [Ro(x")) = po(y | x).

5/18

A Better Twisted Proposal for Importance Sampling

Ideal proposal: py(x*7|y)=ps(x"|y) [T, pa(x*=xt,y)
Challenge: intractable, approximate with some gy(x%T|y) :
> po(x"ly) = po(xT) = po(x" | y)
> Po(x"Hxt, y): =N (X x 02 [sp(xT) + Ve log o (v [x7)], 0%)
where Fp(y | x*) = pyxo(y [Ro(x")) = po(y | x).
Three approximations to derive py(x!~! | xt,y):
po(x "t [X, y) = po(x* ™ | x)paly | x*71)/paly | x7)

5/18

A Better Twisted Proposal for Importance Sampling
Ideal proposal: py(x*7|y)=ps(x"|y) [T, pa(x*=xt,y)
Challenge: intractable, approximate with some gy(x%T|y) :

> Bo(x"1y) == po(xT) = pa(xT | y)
> Fo(x*HxE, y) =N (X x 0% [sp(x") + Ve log By(y[x")], 0%)
where Ba(y | x*) = pyxo(y | Ra(x*)) = po(y | x°).
Three approximations to derive pgy(x!~! | xt,y):
po(x" " [X, y) = po(x* 1 [xE)poly | x71)/poly | x°)

1. Likelihood approximation

5/18

A Better Twisted Proposal for Importance Sampling
Ideal proposal: py(x*7|y)=ps(x"|y) [T, pa(x*=xt,y)
Challenge: intractable, approximate with some gy(x%T|y) :

> Bo(x"1y) == po(xT) = pa(xT | y)
> Bp(x X, y)=N (X x 0 [sp(x") + Ve log By(y[xF)], %)
where pp(y | x*) = pyjxo(y | Ko(x7)) = po(y | x¥).
Three approximations to derive pgy(x!~! | xt,y):

_ 1 _ . e
po(x" [Xt y) = po(x* T xN)Ba(y | X1/ Baly | x")

1. Likelihood approximation

5/18

A Better Twisted Proposal for Importance Sampling
Ideal proposal: py(x*7|y)=ps(x"|y) [T, pa(x*=xt,y)
Challenge: intractable, approximate with some gy(x%T|y) :

> Bo(x"1y) == po(xT) = pa(xT | y)
> Bp(x X, y)=N (X x 0 [sp(x") + Ve log By(y[xF)], %)
where pp(y | x*) = pyjxo(y | Ko(x7)) = po(y | x¥).
Three approximations to derive pgy(x!~! | xt,y):

_ 1 _ . e
po(x" [Xt y) = po(x* T xN)Ba(y | X1/ Baly | x")

1. Likelihood approximation (pBy(y|x%)=p(y|x°) if Ro(x°)=x?)

5/18

A Better Twisted Proposal for Importance Sampling

Ideal proposal: py(x*7|y)=ps(x"|y) [T, pa(x*=xt,y)
Challenge: intractable, approximate with some gy(x%T|y) :
> po(x"ly) = po(xT) = po(x" | y)
> Po(x"Hxt, y): =N (X x 02 [sp(xT) + Ve log o (v [x7)], 0%)
where gy(y | x*) = pypo(y | Ro(x%)) ~ po(y | x).
Three approximations to derive py(x!~! | xt,y):

_ 1 _ 3 T
po(x" 1| x5 y) & po(x* " [x))By(y | xF1)/Baly | x¥)

1. Likelihood approximation (py(y|x%)=p(y|x°) if Ro(x°)=x?)

Bo(yx1)

2. Taylor expand log EAED)

5/18

A Better Twisted Proposal for Importance Sampling
Ideal proposal: py(x*7|y)=ps(x"|y) [T, pa(x*=xt,y)
Challenge: intractable, approximate with some gy(x%T|y) :

> Bo(xTly) = po(xT) = po(xT | y)
> Bo(x XY y): =N (XX 0% [sp(x") + Ve log po(y[x")], o)
where Fp(y | x*) = pyxo(y [Ro(x")) = po(y | x).
Three approximations to derive py(x!~! | xt,y):
_ 1 _ N 1y s
po(x ™ | x*,y) = po(x* ™ [x)Bp(y | x*71)/Boly | x°)
= po(x"1 | x*) exp{log py(y | x*)/pa(y | x")}

1. Likelihood approximation (py(y|x%)=p(y|x°) if Ro(x°)=x?)

Ba(yx1)

2. Taylor expand log EAED)

5/18

A Better Twisted Proposal for Importance Sampling

Ideal proposal: py(x*7|y)=ps(x"|y) [T, pa(x*=xt,y)
Challenge: intractable, approximate with some gy(x%T|y) :

> po(xTly) == po(xT) ~ po(xT | y)
> Fo(x T xE, y)= N (X x 0 [sp(x") + Ve log gy (y [xH)], 0?)
where Fp(y | x*) = pyxo(y [Ro(x")) = po(y | x).
Three approximations to derive py(x!~! | xt,y):
_ 1 _ . 1y e
po(x 1 | xFy) = po(x* 1 [x)Byly | x¥1)/Baly | xF)

2 po(xt1 | xt) exp{(xt~1 — xt) V¢ log po(y | xt)}

1. Likelihood approximation (p”g(y|x0)— (v|x0) if 25(x°)=x?)

2. Taylor expand log pg()(/hxt)) O((x*=1 — x*)?2) error

5/18

A Better Twisted Proposal for Importance Sampling

Ideal proposal: py(x*7|y)=ps(x"|y) [T, pa(x*=xt,y)
Challenge: intractable, approximate with some gy(x%T|y) :

> po(xTly) == po(xT) ~ po(xT | y)
> Fo(x T xE, y)= N (X x 0 [sp(x") + Ve log gy (y [xH)], 0?)
where Fp(y | x*) = pyxo(y [Ro(x")) = po(y | x).
Three approximations to derive py(x!~! | xt,y):
_ 1 _ . 1y e
po(x 1 | xFy) = po(x* 1 [x)Byly | x¥1)/Baly | xF)

2 po(xt1 | xt) exp{(xt~1 — xt) V¢ log po(y | xt)}

1. Likelihood approximation (p”g(y|x0)— (v|x0) if 25(x°)=x?)

2. Taylor expand log pg()(/hxt)) O((x*=1 — x*)?2) error

5/18

A Better Twisted Proposal for Importance Sampling

Ideal proposal: py(x*7|y)=ps(x"|y) [T, pa(x*=xt,y)
Challenge: intractable, approximate with some gy(x%T|y) :

> po(xTly) == po(xT) ~ po(xT | y)
> Fo(x T xE, y)= N (X x 0 [sp(x") + Ve log gy (y [xH)], 0?)
where Fp(y | x*) = pyxo(y [Ro(x")) = po(y | x).
Three approximations to derive py(x!~! | xt,y):
_ 1 _ . 1y e
po(x 1 | xFy) = po(x* 1 [x)Byly | x¥1)/Baly | xF)

2 po(xt1 | xt) exp{(xt~1 — xt) V¢ log po(y | xt)}

1. Likelihood approximation (p”g(y|x0)— (v|x0) if 25(x°)=x?)
2. Taylor expand log pg()(/hxt)) O((x*=1 — x*)?2) error

3. "Twist” and complete the square

5/18

A Better Twisted Proposal for Importance Sampling

Ideal proposal: py(x*7|y)=ps(x"|y) [T, pa(x*=xt,y)
Challenge: intractable, approximate with some gy(x%T|y) :

> po(x"ly) = po(xT) = po(x" | y)
> Pp(x X, y) =N (X x 0 [sp(x") + Ve log By (y[xP)], %)
where Fp(y | x*) = pyxo(y [Ro(x")) = po(y | x).
Three approximations to derive py(x!~! | xt,y):
_ 1 — - _ -
po(x* 1 | x*,y) & po(x* " | x*)Bo(y | x*71)/Baly | x*)
2 _ _ .
~ po(xt1 | xP) exp{(x*7 — x*) V¢ log pa(y | x*)}
3
~ N(xHx 02 [sp(x) + Ve log Bo(y[xF)], 0?)
1. Likelihood approximation (ﬁg(y|xo)— (v|x0) if 25(x°)=x9)
2. Taylor expand log Bo(yx2) O((xt=1 — x*)?) error

Po(ylxt)
3. "Twist” and complete the square

5/18

A Better Twisted Proposal for Importance Sampling

Ideal proposal: py(x*7|y)=ps(x"|y) [T, pa(x*=xt,y)
Challenge: intractable, approximate with some gy(x%T|y) :

> po(x"ly) = pa(xT) = po(x" | y)
> Fo(x T xE, y)= N (X x 0 [sp(x") + Ve log gy (y [xH)], 0?)
where Fp(y | x*) = pyxo(y [Ro(x")) = po(y | x).
Three approximations to derive py(x!~! | xt,y):
_ 1 _ - _ -
po(x" 1| x5 y) & po(x* " [x))By(y | xF1)/Baly | x¥)
2 _ _ ~
~ po(xt1 | xP) exp{(x*7 — x*) V¢ log pa(y | x*)}
3
~ N (x*Hx +0?[sp(x") + Ve log go(y[x")], 0%)
1. Likelihood approximation (ﬁg(y|xo)— (v|x0) if 25(x°)=x9)

2. Taylor expand log ng}(/hxt)) O((xt=1 — x*)?) error

3. “Twist” and complete the square, O(c?) error

5/18

A Better Twisted Proposal for Importance Sampling
Ideal proposal: py(x*7|y)=ps(x"|y) [Ty po(x~t|xt, y)
Challenge: intractable, approximate with some gy(x%7|y) :

> Bo(xTly) == po(xT) ~ po(xT | y)
> Po(x*HxE, y)=N (T x 0 [sp(x") + Ve log By(y[x*)], 0%)
where py(y | x*) = pyjxo(y | Ro(x")) = pa(y | x%).
Three approximations to derive pp(xt~1 | xt, y):
— 1 - ~ — -
po(x* 1 [X, y) & po(x* ™ [x)Ba(y | X 7)/Boly | x7)
2 _ _ .
~ po(x 7 | x) exp{(x" " — x*) Ve log oy | x*)}
3
R N (xHx 0 [55(x) + Ve log fy(y[x")], %)
1. Likelihood approximation (ﬁg(y|x0)— (y|x0) if %9(x°)=x°)
2. Taylor expand log pe"(}zhxf))' O((xt1 — x*)?) error
3. “Twist” and complete the square, O(c?) error
Twisted proposal: fy(x*7|y) = s(x"|y) [1/_; Bo(x* "2 |x%, y)

5/18

A Better Twisted Proposal for Importance Sampling

Ideal proposal: py(x*7|y)=ps(x"|y) [Ty po(x~t|xt, y)
Challenge: intractable, approximate with some gy(x%7|y) :
> po(x"ly) = po(xT) = po(x" |)
> Bp(x X, y) =N (X x 0 [sp(x") + Ve log By (y[xP)], %)
where gy(y | x°) = pyo(y | Ro(x")) = po(y | x*).
Three approximations to derive pp(xt~! | xt, y):
po(x" " [Xt y) & po(x* 1 [xE)Baly | x1)/Baly | xF)
2 polx |) ep{(x 7 =) Ve log iy | x°))
R N 0[5y () + Vi log pi(y[x')], %)
1. Likelihood approximation (p(y|x°) p(y|x°) if X9(x%)=x°)
2. Taylor expand log p"()(/hxt)) O((x*~1 — x*)?) error
3. "Twist” and complete the square, 0(02) error
Twisted proposal: fp(x%7|y) = po(x"|y) [T, Bo(x*x%, y)
Importance weights: w(x%7) = pp(x® 7, y)/Ba(x%T | y)

5/18

Sequential Monte Carlo & The Twisted Diffusion Sampler

Problem: Error adds up

6/18

Sequential Monte Carlo & The Twisted Diffusion Sampler
Problem: Error adds up = KL(pp(x° | y) || po(x° | y)) >> 0.

6/18

Sequential Monte Carlo & The Twisted Diffusion Sampler

Problem: Error adds up = KL(pp(x° | y) || po(x° | y)) >> 0.
Idea: Gradually correct error as t — 0

6/18

Sequential Monte Carlo & The Twisted Diffusion Sampler

Problem: Error adds up = KL(pp(x° | y) || po(x° | y)) >> 0.
Idea: Gradually correct error as t — 0 (& py(y|x*) — po(y|x"))

6/18

Sequential Monte Carlo & The Twisted Diffusion Sampler

Problem: Error adds up = KL(pp(x° | y) || po(x° | y)) >> 0.
Idea: Gradually correct error as t — 0 (& py(y|x*) — po(y|x"))
Sequential Monte Carlo (SMC) ingredients

t:T) O:T) — pG(XO:T | y)

» Series of targets: v¢(x"") with vg(x

6/18

Sequential Monte Carlo & The Twisted Diffusion Sampler

Problem: Error adds up = KL(pp(x° | y) || po(x° | y)) >> 0.
Idea: Gradually correct error as t — 0 (& py(y|x*) — po(y|x"))
Sequential Monte Carlo (SMC) ingredients

> Series of targets: v(xt'7) 0:TY = pg(x%T | y)

» Proposals: p(x7) and p(xt | x!*1) fort =1,..., T —1

with vp(x

6/18

Sequential Monte Carlo & The Twisted Diffusion Sampler

Problem: Error adds up = KL(pp(x° | y) || po(x° | y)) >> 0.
Idea: Gradually correct error as t — 0 (& py(y|x*) — po(y|x"))
Sequential Monte Carlo (SMC) ingredients
> Series of targets: v(xt'7) 0:TY = pg(x%T | y)
» Proposals: p(x7) and p(xt | x!*1) fort =1,..., T —1
> “Extend” targets as v;(x%7T) oc vp(x5T)p(x%t1 | xt)

with vp(x

6/18

Sequential Monte Carlo & The Twisted Diffusion Sampler

Problem: Error adds up = KL(pp(x° | y) || po(x° | y)) >> 0.
Idea: Gradually correct error as t — 0 (& py(y|x*) — po(y|x"))
Sequential Monte Carlo (SMC) ingredients
> Series of targets: v(xt'7) 0:TY = pg(x%T | y)
» Proposals: p(x7) and p(xt | x!*1) fort =1,..., T —1
> “Extend” targets as v;(x%7T) oc vp(x5T)p(x%t1 | xt)

with vp(x

> Resample at each t with weights: wr(xT) oc v7(xT)/p(x")
and wi(xt, xt 1) o v (xt, xP L) Jvp g1 (xF, xEHL)

6/18

Sequential Monte Carlo & The Twisted Diffusion Sampler

Problem: Error adds up = KL(pp(x° | y) || po(x° | y)) >> 0.
Idea: Gradually correct error as t — 0 (& py(y|x*) — po(y|x"))
Sequential Monte Carlo (SMC) ingredients
> Series of targets: v(xt'7) 0:TY = pg(x%T | y)
» Proposals: p(x7) and p(xt | x!*1) fort =1,..., T —1
> “Extend” targets as v;(x%7T) oc vp(x5T)p(x%t1 | xt)

with vp(x

> Resample at each t with weights: wr(xT) oc v7(xT)/p(x")
and wi(xt, xt 1) o v (xt, xP L) Jvp g1 (xF, xEHL)
Twisted Diffusion Sampler (TDS) is an SMC sampler with:
> ve(x"T) o< pp(x=T)pa(y | x*)

6/18

Sequential Monte Carlo & The Twisted Diffusion Sampler

Problem: Error adds up = KL(pp(x° | y) || po(x° | y)) >> 0.
Idea: Gradually correct error as t — 0 (& py(y|x*) — po(y|x"))
Sequential Monte Carlo (SMC) ingredients
> Series of targets: v(xt'7) 0:TY = pg(x%T | y)
» Proposals: p(x7) and p(xt | x!*1) fort =1,..., T —1
> “Extend” targets as v;(x%7T) oc vp(x5T)p(x%t1 | xt)

with vp(x

> Resample at each t with weights: wr(xT) oc v7(xT)/p(x")
and wi(xt, xt 1) o v (xt, xP L) Jvp g1 (xF, xEHL)
Twisted Diffusion Sampler (TDS) is an SMC sampler with:
> ve(x5T) oc pp(xT)Bg(y | x7)
> B(xT) = po(xT) and F(xt | 1) = fy(x* | xtHL,y)

6/18

Sequential Monte Carlo & The Twisted Diffusion Sampler

Problem: Error adds up = KL(pp(x° | y) || po(x° | y)) >> 0.
Idea: Gradually correct error as t — 0 (& py(y|x*) — po(y|x"))
Sequential Monte Carlo (SMC) ingredients
> Series of targets: v(xt'7) 0:TY = pg(x%T | y)
» Proposals: p(x7) and p(xt | x!*1) fort =1,..., T —1
> “Extend” targets as v;(x%7T) oc vp(x5T)p(x%t1 | xt)

with vp(x

> Resample at each t with weights: wr(xT) oc v7(xT)/p(x")
and wi(xt, xt 1) o v (xt, xP L) Jvp g1 (xF, xEHL)
Twisted Diffusion Sampler (TDS) is an SMC sampler with:
> ve(x5T) oc pp(xT)Bg(y | x7)
> B(xT) = po(xT) and p(x* | x*1) = gp(x" | x*H1,y)
> we(xE, X)=py (xF[x) B (v |x) /[Ba (x ¥ IxH1, y) Bo (v Ix)]

6/18

The Twisted Diffusion Sampler (TDS)

Algorithm 1: Twisted Diffusion Sampler
x! ~ N(0, To?)

Wi < Bp = pypo(y | Re(x]))
fort=T,---,1do

[t B} ~ Multinomial ({x{, 6L }; {wi})

st~ B, y) = N (xf + o2lso(x{) + Vg log B, 07

Bt pypoly | 200)

L wie = IpoCi I xt) - B/ 1B (i | ik y) - B

Return {w}, {x%}

7/18

Roadmap

» Diffusion models and conditional generation
» The Twisted Diffusion Sampler (TDS)

> Related work

» Properties of TDS (Theory and Simulations)
» Case study in motif-scaffolding

Related Work

Previous works do not accurately approximate conditional
distributions of unconditional models.

8/18

Related Work

Previous works do not accurately approximate conditional
distributions of unconditional models.

» Conditional Training: Used for text-to-image and protein
design.

8/18

Related Work

Previous works do not accurately approximate conditional
distributions of unconditional models.

» Conditional Training: Used for text-to-image and protein
design. Expensive: data curation, engineering time, compute.

8/18

Related Work

Previous works do not accurately approximate conditional
distributions of unconditional models.

» Conditional Training: Used for text-to-image and protein
design. Expensive: data curation, engineering time, compute.

» Replacement guidance [Song et al., 2020]: Widely used for
image inpainting.

8/18

Related Work

Previous works do not accurately approximate conditional
distributions of unconditional models.

» Conditional Training: Used for text-to-image and protein
design. Expensive: data curation, engineering time, compute.

» Replacement guidance [Song et al., 2020]: Widely used for
image inpainting. No guarantees, applies only to inpainting

8/18

Related Work

Previous works do not accurately approximate conditional
distributions of unconditional models.
» Conditional Training: Used for text-to-image and protein
design. Expensive: data curation, engineering time, compute.
» Replacement guidance [Song et al., 2020]: Widely used for
image inpainting. No guarantees, applies only to inpainting
» Reconstruction guidance [Ho et al., 2022]: Backprop
through the denoising model.

8/18

Related Work

Previous works do not accurately approximate conditional
distributions of unconditional models.
» Conditional Training: Used for text-to-image and protein
design. Expensive: data curation, engineering time, compute.
» Replacement guidance [Song et al., 2020]: Widely used for
image inpainting. No guarantees, applies only to inpainting
» Reconstruction guidance [Ho et al., 2022]: Backprop
through the denoising model. No guarantees, can perform
poorly [Zhang et al., 2023]

8/18

Related Work

Previous works do not accurately approximate conditional
distributions of unconditional models.
» Conditional Training: Used for text-to-image and protein
design. Expensive: data curation, engineering time, compute.
» Replacement guidance [Song et al., 2020]: Widely used for
image inpainting. No guarantees, applies only to inpainting
» Reconstruction guidance [Ho et al., 2022]: Backprop
through the denoising model. No guarantees, can perform
poorly [Zhang et al., 2023]
» Twisted SMC [Whiteley and Lee, 2014, Guarniero et al.,
2017, Heng et al., 2020]: Modify SMC targets and proposals
for improved efficiency.

8/18

Related Work

Previous works do not accurately approximate conditional
distributions of unconditional models.

» Conditional Training: Used for text-to-image and protein
design. Expensive: data curation, engineering time, compute.

» Replacement guidance [Song et al., 2020]: Widely used for
image inpainting. No guarantees, applies only to inpainting

» Reconstruction guidance [Ho et al., 2022]: Backprop
through the denoising model. No guarantees, can perform
poorly [Zhang et al., 2023]

» Twisted SMC [Whiteley and Lee, 2014, Guarniero et al.,
2017, Heng et al., 2020]: Modify SMC targets and proposals
for improved efficiency. Requires a twisting function —
(choosing it is a contribution of this work)

8/18

Related Work

Previous works do not accurately approximate conditional
distributions of unconditional models.

| 4

>

>

Conditional Training: Used for text-to-image and protein
design. Expensive: data curation, engineering time, compute.
Replacement guidance [Song et al., 2020]: Widely used for
image inpainting. No guarantees, applies only to inpainting
Reconstruction guidance [Ho et al., 2022]: Backprop
through the denoising model. No guarantees, can perform
poorly [Zhang et al., 2023]

Twisted SMC [Whiteley and Lee, 2014, Guarniero et al.,
2017, Heng et al., 2020]: Modify SMC targets and proposals
for improved efficiency. Requires a twisting function —
(choosing it is a contribution of this work)

SMCDIfF [Trippe et al., 2022]: asymptotically accurate for
inpaininting.

8/18

Related Work

Previous works do not accurately approximate conditional
distributions of unconditional models.

| 4

>

>

Conditional Training: Used for text-to-image and protein
design. Expensive: data curation, engineering time, compute.
Replacement guidance [Song et al., 2020]: Widely used for
image inpainting. No guarantees, applies only to inpainting
Reconstruction guidance [Ho et al., 2022]: Backprop
through the denoising model. No guarantees, can perform
poorly [Zhang et al., 2023]
Twisted SMC [Whiteley and Lee, 2014, Guarniero et al.,
2017, Heng et al., 2020]: Modify SMC targets and proposals
for improved efficiency. Requires a twisting function —
(choosing it is a contribution of this work)
SMCDIfF [Trippe et al., 2022]: asymptotically accurate for
inpaininting. But assumes p = g and doesn't support general
likelihoods, or use twisting.

8/18

TDS: Asymptotic Accuracy and Small Intermediate KLs

Thm 1: Let Px=>we) Y wid,0 be the output of K-particle
TDS. Pk converges weakly to pp(x° | y) as K — oo.

9/18

TDS: Asymptotic Accuracy and Small Intermediate KLs

Thm 1: Let Px=>we) Y wid,0 be the output of K-particle
TDS. Pk converges weakly to pp(x° | y) as K — oo.

» We require py(y | x*) to be smooth in x* and bounded.

9/18

TDS: Asymptotic Accuracy and Small Intermediate KLs

Thm 1: Let Px=>we) Y wid,0 be the output of K-particle
TDS. Pk converges weakly to pp(x° | y) as K — oo.

» We require py(y | x*) to be smooth in x* and bounded.

Thm 2: Set 02 = 02/ T. Then max; KL(v; || ve11) < CT L.

9/18

TDS: Asymptotic Accuracy and Small Intermediate KLs

Thm 1: Let Px=>we) Y wid,0 be the output of K-particle
TDS. Pk converges weakly to pp(x° | y) as K — oo.

» We require py(y | x*) to be smooth in x* and bounded.

Thm 2: Set 02 = 02/ T. Then max; KL(v; || ve11) < CT L.

> With more steps, fewer particles are required

9/18

TDS: Asymptotic Accuracy and Small Intermediate KLs

Thm 1: Let Px=>we) Y wid,0 be the output of K-particle
TDS. Pk converges weakly to pp(x° | y) as K — oo.

» We require py(y | x*) to be smooth in x* and bounded.

Thm 2: Set 02 = 02/ T. Then max; KL(v; || ve41) < CT L.

> With more steps, fewer particles are required
Proof sketch:

KL(vt || ver1) = By, [log ve(x*T) /ve41(x* 7))

9/18

TDS: Asymptotic Accuracy and Small Intermediate KLs

Thm 1: Let Px=>we) Y wid,0 be the output of K-particle
TDS. Pk converges weakly to pp(x° | y) as K — oo.

» We require py(y | x*) to be smooth in x* and bounded.

Thm 2: Set 02 = 02/ T. Then max; KL(v; || ve41) < CT L.

> With more steps, fewer particles are required
Proof sketch:

KL(ve [| ve+1) = Ev[log we(x', x)] + log Z,,., / Z,,

9/18

TDS: Asymptotic Accuracy and Small Intermediate KLs

Thm 1: Let Px=>we) Y wid,0 be the output of K-particle
TDS. Pk converges weakly to pp(x° | y) as K — oo.

» We require py(y | x*) to be smooth in x* and bounded.

Thm 2: Set 02 = 02/ T. Then max; KL(v; || ve41) < CT L.

> With more steps, fewer particles are required
Proof sketch:

KL(ve [| ve+1) = Ev[log we(x', x)] + log Z,,., / Z,,

> Iog Wt(Xt,Xt+1):O((Xt—Xt+1)2—|—O'2)

9/18

TDS: Asymptotic Accuracy and Small Intermediate KLs

Thm 1: Let Px=>we) Y wid,0 be the output of K-particle
TDS. Pk converges weakly to pp(x° | y) as K — oo.

» We require py(y | x*) to be smooth in x* and bounded.

Thm 2: Set 02 = 02/ T. Then max; KL(v; || ve41) < CT L.

> With more steps, fewer particles are required
Proof sketch:

KL(vt || ver1) = Ev[log we(x", x"*1)] + log Z,,,., / Z,
= E,[O((x"" = x*)? + 0?)] + log Z,,., / Z,

> log we(xt, xP) =0((xt—xt*1)2402)

9/18

TDS: Asymptotic Accuracy and Small Intermediate KLs

Thm 1: Let Px=>we) Y wid,0 be the output of K-particle
TDS. Pk converges weakly to pp(x° | y) as K — oo.

» We require py(y | x*) to be smooth in x* and bounded.

Thm 2: Set 02 = 02/ T. Then max; KL(v; || ve41) < CT L.

> With more steps, fewer particles are required
Proof sketch:

KL(vt || ver1) = Ev[log we(x", x"*1)] + log Z,,,., / Z,
= E,[O((x"" = x*)? + 0?)] + log Z,,., / Z,

> |0g Wt(Xt,Xt+1):O((Xt—Xt+1)2—|—O'2) th+1 — Zyt—i-O(Jz)

9/18

TDS: Asymptotic Accuracy and Small Intermediate KLs

Thm 1: Let Px=>we) Y wid,0 be the output of K-particle
TDS. Pk converges weakly to pp(x° | y) as K — oo.

» We require py(y | x*) to be smooth in x* and bounded.

Thm 2: Set 02 = 02/ T. Then max; KL(v; || ve41) < CT L.

> With more steps, fewer particles are required
Proof sketch:

KL(vt || ve41) = E,,[log Wt(Xt,Xt+1)] +log Z,.../ 2,
=B, [O((x" = x*)? + 0%)] + O(c?)

> |0g Wt(Xt,Xt+1):O((Xt—Xt+1)2—|—O'2) th+1 — Zyt—i-O(Jz)

9/18

TDS: Asymptotic Accuracy and Small Intermediate KLs

Thm 1: Let Px=>we) Y wid,0 be the output of K-particle
TDS. Pk converges weakly to pp(x° | y) as K — oo.

» We require py(y | x*) to be smooth in x* and bounded.

Thm 2: Set 02 = 02/ T. Then max; KL(v; || ve41) < CT L.

> With more steps, fewer particles are required
Proof sketch:

KL(vt || ver1) = Ev[log we(x", x"*1)] + log Z,,,., / Z,
= E,[O((x"" = x*)? + 0?)] + O(0?)
= 0(0?) + 0(c?)

> log we(xt, xt)=0((xt—xt*1)2402) Z

Vi+l

= ZVt+O(J2)

9/18

TDS: Asymptotic Accuracy and Small Intermediate KLs

Thm 1: Let Px=>we) Y wid,0 be the output of K-particle
TDS. Pk converges weakly to pp(x° | y) as K — oo.

» We require py(y | x*) to be smooth in x* and bounded.

Thm 2: Set 02 = 02/ T. Then max; KL(v; || ve41) < CT L.

> With more steps, fewer particles are required
Proof sketch:

KL(vt || ve41) = E,,[log Wt(Xt,Xt+1)] +log Z,.../ 2,
= E, [O((x* = x)? + %)] + O(?)
= 0(c?) + 0(6°) = 0(5?)

> log we(xt, xt)=0((xt—xt*1)2402) Z

Vi+l

= ZVt+O(J2)

9/18

TDS: Asymptotic Accuracy and Small Intermediate KLs

Thm 1: Let Px=>we) Y wid,0 be the output of K-particle
TDS. Pk converges weakly to pp(x° | y) as K — oo.

» We require py(y | x*) to be smooth in x* and bounded.

Thm 2: Set 02 = 02/ T. Then max; KL(v; || ve41) < CT L.

> With more steps, fewer particles are required
Proof sketch:

KL(vt || ve41) = By, [log we(xt, x| + log Zy1 /2y,
=E, [O((x"" = x")? + 0%)] + O(c?)
= 0(0?)+ O(0?) = O(c®) = O(T)

> log wi(xt, x! T H=0((xt—x*1)2+02) Z,,,, = Z,+0(c?)

Vi+l

9/18

Simulation study

Gaussian mixture g(x°)

» Tractable score &
ground truth

10/18

Simulation study

Gaussian mixture g(x°)

» Tractable score &
ground truth

>y~
Laplace(]|x°||2,1)

10/18

Simulation study

Gaussian mixture g(x°)

» Tractable score &
ground truth

>y~
Laplace(]|x°||2,1)

m— TDS = eeeee Guidance
== TDS-IS === |S

_ 107!

e N

w102 *Q

3 10-3 4 ":53'5

o LON e e

3 LN

c i Lo

§ 101 Nos:
T T T T
101 102 103 104

of Particles (K)

Estimand: E[x° | y

= 0]

10/18

Simulation study

= TDS seees Guidance
== TDS-IS === |S

o 101

5 5

S 1072 A %;55

g N %,

S 1073 1 :5

o 5N 0 e

3 LN

c i QI

é 107% \:gs
T T T T
10! 102 103 104

Gaussian mixture g(x°) # of Particles (K)

» Tractable score &
ground truth

\4

Estimand: E[x° | y = 0]
> O(K‘l) convergence for TDS, and

Laplace(||x°]|2, 1)

10/18

Simulation study

= TDS seees Guidance
== TDS-IS === |S

_ 101

5 5

L1072 %,;5!

8 S e,

3 10-3 A ".’S:

o e 0 e

3 LN

c i QI

§10 1 \\'"'5
T T T T
10! 102 103 104

Gaussian mixture g(x°) # of Particles (K)

» Tractable score &

ground truth » Estimand: E[x° | y = 0]

> O(K‘l) convergence for TDS, and
IS

» Guidance is biased.

| 2 y ~
Laplace(||x°]|2, 1)

10/18

MNIST class-conditional generation

TDS TDS-truncate TDS-IS Guidance

Figure: Approximate conditional samples for class y = 7.

11/18

Protein Design Case Study: The Motif-Scaffolding Problem

Common protein design workflow!

Desired Function Functional “Motif”
(e.

T s
BB "% S0 7

Motif Identification Motif-Scaffolding

Designed “Scaffold”

o

igure credit to David Juergens and Doug Tischer
12/18

Protein Design Case Study: The Motif-Scaffolding Problem

Common protein design workflow?

Desired Function Functional “Motif”
(e.

T =
BB "% S0 7

Motif Identification Motif-Scaffolding

Designed “Scaffold”

o

» Used to design vaccines, enzymes [Procko et al., 2014, Jiang
et al., 2008]

igure credit to David Juergens and Doug Tischer
12/18

Protein Design Case Study: The Motif-Scaffolding Problem

Common protein design workflow?

Desired Function Functional "Motif” Designed “Scaffold”
(e.9. binding)
-5l g%f/g 5
- \%ﬁ
g

Motif Identification Motif-Scaffolding

o

» Used to design vaccines, enzymes [Procko et al., 2014, Jiang
et al., 2008]

» AlphaFold provides validation predictive of experimental
success [Wang et al., 2022]

igure credit to David Juergens and Doug Tischer
12/18

Protein Design Case Study: The Motif-Scaffolding Problem

Common protein design workflow?

Desired Function Functional “Motif” Designed “Scaffold”
g/e.?_.‘ binding) g %
- -~ ol R
Motif Identification Motif-Scaffolding \//

» Used to design vaccines, enzymes [Procko et al., 2014, Jiang
et al., 2008]

» AlphaFold provides validation predictive of experimental
success [Wang et al., 2022]

» Recent progress with ML methods [Trippe et al., 2022,
Watson et al., 2022], but problem remains open

igure credit to David Juergens and Doug Tischer
12/18

Protein Design Case Study: The Motif-Scaffolding Problem

What makes this problem hard?

13/18

Protein Design Case Study: The Motif-Scaffolding Problem

What makes this problem hard?

All Structures (x)

13/18

Protein Design Case Study: The Motif-Scaffolding Problem
What makes this problem hard?

All Structures (x)

Native Structures

13/18

Protein Design Case Study: The Motif-Scaffolding Problem

What makes this problem hard?

All Structures (x)

Conditional generative
modeling approach [Trippe
et al., 2022]

1. Fit py(x) to structures Native Structures
of native proteins.

2. Sample x~py(x|y), for
Po(x, y)=po(x)dy (xnm)

13/18

Protein Design Case Study: The Motif-Scaffolding Problem

What makes this problem hard?

All Structures (x)

Conditional generative
modeling approach [Trippe
et al., 2022]

Pe(xo)

1. Fit py(x) to structures
of native proteins.

2. Sample x~py(x|y), for
Po(x, y)=pa(x)dy (xm)

13/18

Protein Design Case Study: The Motif-Scaffolding Problem

What makes this problem hard?

All Structures (x)

Conditional generative
modeling approach [Trippe
et al., 2022]

Pe(xo)

1. Fit py(x) to structures
of native proteins.

2. Sample x~py(x|y), for
Po(x, y)=pa(x)dy (xm)

Intuition: If py(x) > 0 only if x is a “real” molecule, then

po(x | y) > 0 only if x is a “real” molecule containing y. 51

The Motif-Scaffolding Problem Presents Challenges

» Protein structures live in 3D space and must conform to
physical constraints

14/18

The Motif-Scaffolding Problem Presents Challenges

» Protein structures live in 3D space and must conform to
physical constraints — we use equivariant graph neural
networks designed for proteins [Baek and Baker, 2022,
Jumper et al., 2021]

14/18

The Motif-Scaffolding Problem Presents Challenges

» Protein structures live in 3D space and must conform to
physical constraints — we use equivariant graph neural
networks designed for proteins [Baek and Baker, 2022,
Jumper et al., 2021]

» Convenient representations are non-Euclidean

14/18

The Motif-Scaffolding Problem Presents Challenges

» Protein structures live in 3D space and must conform to
physical constraints — we use equivariant graph neural
networks designed for proteins [Baek and Baker, 2022,
Jumper et al., 2021]

» Convenient representations are non-Euclidean — Riemannian
diffusion [De Bortoli et al., 2022]

14/18

The Motif-Scaffolding Problem Presents Challenges

» Protein structures live in 3D space and must conform to
physical constraints — we use equivariant graph neural
networks designed for proteins [Baek and Baker, 2022,
Jumper et al., 2021]

» Convenient representations are non-Euclidean — Riemannian
diffusion [De Bortoli et al., 2022]
> We use an SE(3)V diffusion model [Yim et al., 2023]

14/18

The Motif-Scaffolding Problem Presents Challenges

» Protein structures live in 3D space and must conform to
physical constraints — we use equivariant graph neural
networks designed for proteins [Baek and Baker, 2022,
Jumper et al., 2021]

» Convenient representations are non-Euclidean — Riemannian
diffusion [De Bortoli et al., 2022]

> We use an SE(3)V diffusion model [Yim et al., 2023]
> Extra degrees of freedom that are difficult to choose

» |ndices of motif within chain
» Rotation & translation of motif

14 /18

The Motif-Scaffolding Problem Presents Challenges

» Protein structures live in 3D space and must conform to
physical constraints — we use equivariant graph neural
networks designed for proteins [Baek and Baker, 2022,
Jumper et al., 2021]

» Convenient representations are non-Euclidean — Riemannian
diffusion [De Bortoli et al., 2022]

> We use an SE(3)V diffusion model [Yim et al., 2023]
> Extra degrees of freedom that are difficult to choose

» |ndices of motif within chain
» Rotation & translation of motif
> We marginalize these out in the twisting function

14 /18

Motif-Scaffolding Problem — Example Trajectory

> View of %p(x*)

for 9/64
particles. v %
» Most probable g' \“ %
motif is in
black.

15/18

Motif-Scaffolding Problem — Example Trajectory

> View of %p(x*)

for 9/64
particles. ,
» Most probable & %"
motif is in
black.

15/18

Motif-Scaffolding Problem — Example Trajectory

> View of %p(x*)

for 9/64

particles. ; f;gh
» Most probable = ‘,J

motif is in

black.

£ UG OOUY

15/18

Motif-Scaffolding Problem — Example Trajectory

> View of %p(x*)
for 9/64
particles.

» Most probable
motif is in
black.

15/18

Motif-Scaffolding Problem — Example Results

Success rate (%)

1 2 4 8 16
Particles

> Up to ~5X increase in success rate

16/18

Motif-Scaffolding Problem — Example Results

N
w

== N
A A

Success rate (%)
w

o
I

1 2 4 8 16 1 10 10010000 1 10 100 1000 0.50.751.0 2.0 3.0
Particles # Motif Locs. # Motif Rots. Twist Scale

> Up to ~5X increase in success rate

» Performance relies on accomodation of degrees of freedom

» Including a multiplicative factor (twist scale) on the twisting
function can improve performance

» On benchmark set, state of the art performance on 9/12
problems with short (< 100 residue) scaffolds.

16/18

Motif-Scaffolding Problem — Effective Sample Size

6EXZ_med

T T T T T
[e0] o < o o

9215 9|dwes 31309443

51US

i | o
T T T T T
© W < ~N O

9215 a|dwes aA130843

Step (T-t)

Step (T-t)

17/18

Twisted Diffusion Sampling (TDS) — Summary

» Accuracy of conditional sampling is a practical limitation of
current controlled generation algorithms for diffusion models.

18/18

briantrippe.com/TDS_prepreprint.pdf

Twisted Diffusion Sampling (TDS) — Summary

» Accuracy of conditional sampling is a practical limitation of
current controlled generation algorithms for diffusion models.

» Sequential Monte Carlo allows asymptotically exact estimation
of conditional distributions of diffusion probabilistic models.

18/18

briantrippe.com/TDS_prepreprint.pdf

Twisted Diffusion Sampling (TDS) — Summary

» Accuracy of conditional sampling is a practical limitation of
current controlled generation algorithms for diffusion models.

» Sequential Monte Carlo allows asymptotically exact estimation
of conditional distributions of diffusion probabilistic models.

» Via “Twisting,” heuristic approximations define proposals that
improve efficiency without sacrifing exactness.

18/18

briantrippe.com/TDS_prepreprint.pdf

Twisted Diffusion Sampling (TDS) — Summary

» Accuracy of conditional sampling is a practical limitation of
current controlled generation algorithms for diffusion models.

» Sequential Monte Carlo allows asymptotically exact estimation
of conditional distributions of diffusion probabilistic models.

» Via “Twisting,” heuristic approximations define proposals that
improve efficiency without sacrifing exactness.

» Our implementation, TDS, provides state-of-the-art
performance in protein design

Further Information

Trippe, Brian L.*, Luhuan Wu*, Christian A. Naesseth, John P.
Cunningham, David Blei. " Practical and Asymptotically Exact
Conditional Sampling in Diffusion Models.” (2023) * equal
contribution briantrippe.com/TDS_prepreprint.pdf.
Contact me: blt2114@columbia.edu

18/18

briantrippe.com/TDS_prepreprint.pdf

References

Minkyung Baek and David Baker. Deep learning and protein structure
modeling. Nature methods, 19(1):13-14, 2022.

Sourav Chatterjee and Persi Diaconis. The sample size required in importance
sampling. The Annals of Applied Probability, 28(2):1099-1135, 2018.

Valentin De Bortoli, Emile Mathieu, Michael John Hutchinson, James
Thornton, Yee Whye Teh, and Arnaud Doucet. Riemannian score-based
generative modelling. In Advances in Neural Information Processing
Systems, 2022.

Pieralberto Guarniero, Adam M Johansen, and Anthony Lee. The iterated
auxiliary particle filter. Journal of the American Statistical Association, 112
(520):1636-1647, 2017.

Jeremy Heng, Adrian N Bishop, George Deligiannidis, and Arnaud Doucet.
Controlled sequential Monte Carlo. Annals of Statistics, 48(5), 2020.

Jonathan Ho, Tim Salimans, Alexey A Gritsenko, William Chan, Mohammad
Norouzi, and David J Fleet. Video diffusion models. In Advances in Neural
Information Processing Systems, 2022.

Lin Jiang, Eric A Althoff, Fernando R Clemente, Lindsey Doyle, Daniela
Rothlisberger, Alexandre Zanghellini, Jasmine L Gallaher, Jamie L Betker,
Fujie Tanaka, Carlos F Barbas Ill, Donald Hilvert, Kendal N Houk, Barry L.
Stoddard, and David Baker. De novo computational design of retro-aldol
enzymes. Science, 319(5868):1387-1391, 2008.

John M. Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael

	Motivation
	Twisted Diffusion Sampler
	Appendix
	References

