
Twisted Diffusion Sampling for Accurate
Conditional Generation, with Application to

Protein Design

Brian L. Trippe

Columbia University, Department of Statistics

July 19, 2023

Conditional Sampling for Protein Binder Design
Diffusion models generate protein binders with 10− 100× higher
success rates than previous methods [WJBTY+, 2022]

Key idea: Learn model of protein structure, design by sampling
from conditional distributions
Challenge: analytical intractability of exact conditionals
I Heuristic guidance [reconstruction & replacement]: inaccurate
I Conditional training: time-consuming, (inaccurate)

We provide: Sequential Monte Carlo for conditional generation.
I Asymptotically exact (in compute cost), general, and delivers

state of the art in silico success rates in protein design.

1 / 18

Conditional Sampling for Protein Binder Design
Diffusion models generate protein binders with 10− 100× higher
success rates than previous methods [WJBTY+, 2022]

Key idea: Learn model of protein structure, design by sampling
from conditional distributions

Challenge: analytical intractability of exact conditionals
I Heuristic guidance [reconstruction & replacement]: inaccurate
I Conditional training: time-consuming, (inaccurate)

We provide: Sequential Monte Carlo for conditional generation.
I Asymptotically exact (in compute cost), general, and delivers

state of the art in silico success rates in protein design.

1 / 18

Conditional Sampling for Protein Binder Design
Diffusion models generate protein binders with 10− 100× higher
success rates than previous methods [WJBTY+, 2022]

Key idea: Learn model of protein structure, design by sampling
from conditional distributions
Challenge: analytical intractability of exact conditionals

I Heuristic guidance [reconstruction & replacement]: inaccurate
I Conditional training: time-consuming, (inaccurate)

We provide: Sequential Monte Carlo for conditional generation.
I Asymptotically exact (in compute cost), general, and delivers

state of the art in silico success rates in protein design.

1 / 18

Conditional Sampling for Protein Binder Design
Diffusion models generate protein binders with 10− 100× higher
success rates than previous methods [WJBTY+, 2022]

Key idea: Learn model of protein structure, design by sampling
from conditional distributions
Challenge: analytical intractability of exact conditionals
I Heuristic guidance [reconstruction & replacement]: inaccurate

I Conditional training: time-consuming, (inaccurate)

We provide: Sequential Monte Carlo for conditional generation.
I Asymptotically exact (in compute cost), general, and delivers

state of the art in silico success rates in protein design.

1 / 18

Conditional Sampling for Protein Binder Design
Diffusion models generate protein binders with 10− 100× higher
success rates than previous methods [WJBTY+, 2022]

Key idea: Learn model of protein structure, design by sampling
from conditional distributions
Challenge: analytical intractability of exact conditionals
I Heuristic guidance [reconstruction & replacement]: inaccurate
I Conditional training: time-consuming

, (inaccurate)

We provide: Sequential Monte Carlo for conditional generation.
I Asymptotically exact (in compute cost), general, and delivers

state of the art in silico success rates in protein design.

1 / 18

Conditional Sampling for Protein Binder Design
Diffusion models generate protein binders with 10− 100× higher
success rates than previous methods [WJBTY+, 2022]

Key idea: Learn model of protein structure, design by sampling
from conditional distributions
Challenge: analytical intractability of exact conditionals
I Heuristic guidance [reconstruction & replacement]: inaccurate
I Conditional training: time-consuming, (inaccurate)

We provide: Sequential Monte Carlo for conditional generation.
I Asymptotically exact (in compute cost), general, and delivers

state of the art in silico success rates in protein design.

1 / 18

Conditional Sampling for Protein Binder Design
Diffusion models generate protein binders with 10− 100× higher
success rates than previous methods [WJBTY+, 2022]

Key idea: Learn model of protein structure, design by sampling
from conditional distributions
Challenge: analytical intractability of exact conditionals
I Heuristic guidance [reconstruction & replacement]: inaccurate
I Conditional training: time-consuming, (inaccurate)

We provide: Sequential Monte Carlo for conditional generation.

I Asymptotically exact (in compute cost), general, and delivers
state of the art in silico success rates in protein design.

1 / 18

Conditional Sampling for Protein Binder Design
Diffusion models generate protein binders with 10− 100× higher
success rates than previous methods [WJBTY+, 2022]

Key idea: Learn model of protein structure, design by sampling
from conditional distributions
Challenge: analytical intractability of exact conditionals
I Heuristic guidance [reconstruction & replacement]: inaccurate
I Conditional training: time-consuming, (inaccurate)

We provide: Sequential Monte Carlo for conditional generation.
I Asymptotically exact (in compute cost), general, and delivers

state of the art in silico success rates in protein design.
1 / 18

Roadmap

I Diffusion models and conditional generation

I The Twisted Diffusion Sampler (TDS)

I Related work

I Properties of TDS (Theory and Simulations)

I Case study in motif-scaffolding

Diffusion Set-Up and Notation

I Goal: estimation of q(x0) from samples.

I Noising process: q(x0:T) = q(x0)
∏T

t=1 q(x t | x t−1)
I q(x t | x t−1) = N (x t | x t−1, σ2) for t = 1, . . . ,T
I q(x t) =

∫
N (x t | x0, tσ2)q(x0)dx0

I Idea: generate new samples by “reversing” q
I xT ∼ q(xT)
I x t−1 ∼ q(x t−1|x t)

I Two approximations for q(x t−1 | x t):

2 / 18

Diffusion Set-Up and Notation

I Goal: estimation of q(x0) from samples.

I Noising process: q(x0:T) = q(x0)
∏T

t=1 q(x t | x t−1)
I q(x t | x t−1) = N (x t | x t−1, σ2) for t = 1, . . . ,T

I q(x t) =
∫
N (x t | x0, tσ2)q(x0)dx0

I Idea: generate new samples by “reversing” q
I xT ∼ q(xT)
I x t−1 ∼ q(x t−1|x t)

I Two approximations for q(x t−1 | x t):

2 / 18

Diffusion Set-Up and Notation

I Goal: estimation of q(x0) from samples.

I Noising process: q(x0:T) = q(x0)
∏T

t=1 q(x t | x t−1)
I q(x t | x t−1) = N (x t | x t−1, σ2) for t = 1, . . . ,T
I q(x t) =

∫
N (x t | x0, tσ2)q(x0)dx0

I Idea: generate new samples by “reversing” q
I xT ∼ q(xT)
I x t−1 ∼ q(x t−1|x t)

I Two approximations for q(x t−1 | x t):

2 / 18

Diffusion Set-Up and Notation

I Goal: estimation of q(x0) from samples.

I Noising process: q(x0:T) = q(x0)
∏T

t=1 q(x t | x t−1)
I q(x t | x t−1) = N (x t | x t−1, σ2) for t = 1, . . . ,T
I q(x t) =

∫
N (x t | x0, tσ2)q(x0)dx0

I Idea: generate new samples by “reversing” q
I xT ∼ q(xT)
I x t−1 ∼ q(x t−1|x t)

I Two approximations for q(x t−1 | x t):

2 / 18

Diffusion Set-Up and Notation

I Goal: estimation of q(x0) from samples.

I Noising process: q(x0:T) = q(x0)
∏T

t=1 q(x t | x t−1)
I q(x t | x t−1) = N (x t | x t−1, σ2) for t = 1, . . . ,T
I q(x t) =

∫
N (x t | x0, tσ2)q(x0)dx0

I Idea: generate new samples by “reversing” q... approximately
I xT ∼ q(xT)
I x t−1 ∼ q(x t−1|x t)

I Two approximations for q(x t−1 | x t):

2 / 18

Diffusion Set-Up and Notation

I Goal: estimation of q(x0) from samples.

I Noising process: q(x0:T) = q(x0)
∏T

t=1 q(x t | x t−1)
I q(x t | x t−1) = N (x t | x t−1, σ2) for t = 1, . . . ,T
I q(x t) =

∫
N (x t | x0, tσ2)q(x0)dx0

I Idea: generate new samples by “reversing” q... approximately
I xT ∼ q(xT) ≈ N (0,Tσ2)
I x t−1 ∼ q(x t−1|x t)

I Two approximations for q(x t−1 | x t):

2 / 18

Diffusion Set-Up and Notation

I Goal: estimation of q(x0) from samples.

I Noising process: q(x0:T) = q(x0)
∏T

t=1 q(x t | x t−1)
I q(x t | x t−1) = N (x t | x t−1, σ2) for t = 1, . . . ,T
I q(x t) =

∫
N (x t | x0, tσ2)q(x0)dx0

I Idea: generate new samples by “reversing” q... approximately
I xT ∼ q(xT) ≈ N (0,Tσ2)
I x t−1 ∼ q(x t−1|x t)

I Two approximations for q(x t−1 | x t):

2 / 18

Diffusion Set-Up and Notation

I Goal: estimation of q(x0) from samples.

I Noising process: q(x0:T) = q(x0)
∏T

t=1 q(x t | x t−1)
I q(x t | x t−1) = N (x t | x t−1, σ2) for t = 1, . . . ,T
I q(x t) =

∫
N (x t | x0, tσ2)q(x0)dx0

I Idea: generate new samples by “reversing” q... approximately
I xT ∼ q(xT) ≈ N (0,Tσ2)
I x t−1 ∼ q(x t−1|x t)≈N (x t−1|x t+σ2∇ log q(x t), σ2)

I Two approximations for q(x t−1 | x t):

1. Gaussian approximation (via Bayes’ rule + Taylor’s theorem)

2 / 18

Diffusion Set-Up and Notation

I Goal: estimation of q(x0) from samples.

I Noising process: q(x0:T) = q(x0)
∏T

t=1 q(x t | x t−1)
I q(x t | x t−1) = N (x t | x t−1, σ2) for t = 1, . . . ,T
I q(x t) =

∫
N (x t | x0, tσ2)q(x0)dx0

I Idea: generate new samples by “reversing” q... approximately
I xT ∼ q(xT) ≈ N (0,Tσ2)
I x t−1 ∼ q(x t−1|x t) ≈ N (x t−1|x t+σ2∇ log q(x t) , σ2)

I Two approximations for q(x t−1 | x t):

1. Gaussian approximation (via Bayes’ rule + Taylor’s theorem)

2 / 18

Diffusion Set-Up and Notation

I Goal: estimation of q(x0) from samples.

I Noising process: q(x0:T) = q(x0)
∏T

t=1 q(x t | x t−1)
I q(x t | x t−1) = N (x t | x t−1, σ2) for t = 1, . . . ,T
I q(x t) =

∫
N (x t | x0, tσ2)q(x0)dx0

I Idea: generate new samples by “reversing” q... approximately
I xT ∼ q(xT) ≈ N (0,Tσ2)
I x t−1 ∼ q(x t−1|x t) ≈ N (x t−1|x t+σ2∇ log q(x t) , σ2)

I Two approximations for q(x t−1 | x t):

1. Gaussian approximation (via Bayes’ rule + Taylor’s theorem)
2. Tweedie’s rule: ∇ log q(x t)=(Eq[x0|x t]−x t)/tσ2

2 / 18

Diffusion Set-Up and Notation

I Goal: estimation of q(x0) from samples.

I Noising process: q(x0:T) = q(x0)
∏T

t=1 q(x t | x t−1)
I q(x t | x t−1) = N (x t | x t−1, σ2) for t = 1, . . . ,T
I q(x t) =

∫
N (x t | x0, tσ2)q(x0)dx0

I Idea: generate new samples by “reversing” q... approximately
I xT ∼ q(xT) ≈ N (0,Tσ2)
I x t−1 ∼ q(x t−1|x t) ≈ N (x t−1|x t+σ2∇ log q(x t), σ2)

I Two approximations for q(x t−1 | x t):

1. Gaussian approximation (via Bayes’ rule + Taylor’s theorem)
2. Tweedie’s rule: ∇ log q(x t)=(Eq[x0|x t]−x t)/tσ2

2 / 18

Diffusion Set-Up and Notation

I Goal: estimation of q(x0) from samples.

I Noising process: q(x0:T) = q(x0)
∏T

t=1 q(x t | x t−1)
I q(x t | x t−1) = N (x t | x t−1, σ2) for t = 1, . . . ,T
I q(x t) =

∫
N (x t | x0, tσ2)q(x0)dx0

I Idea: generate new samples by “reversing” q... approximately
I xT ∼ q(xT) ≈ N (0,Tσ2)
I x t−1 ∼ q(x t−1|x t) ≈ N (x t−1|x t+σ2∇ log q(x t), σ2)

I Two approximations for q(x t−1 | x t):

1. Gaussian approximation (via Bayes’ rule + Taylor’s theorem)

2. Tweedie’s rule: ∇ log q(x t)=(Eq[x0|x t]−x t)/tσ2

I Train x̂θ(x t , t) ≈ Eq[x0|x t] (via“denoising score matching”)

2 / 18

Diffusion Set-Up and Notation

I Goal: estimation of q(x0) from samples.

I Noising process: q(x0:T) = q(x0)
∏T

t=1 q(x t | x t−1)
I q(x t | x t−1) = N (x t | x t−1, σ2) for t = 1, . . . ,T
I q(x t) =

∫
N (x t | x0, tσ2)q(x0)dx0

I Idea: generate new samples by “reversing” q... approximately
I xT ∼ q(xT) ≈ N (0,Tσ2)
I x t−1 ∼ q(x t−1|x t) ≈ N (x t−1|x t+σ2∇ log q(x t), σ2)

I Two approximations for q(x t−1 | x t):

1. Gaussian approximation (via Bayes’ rule + Taylor’s theorem)
2. Tweedie’s rule: ∇ log q(x t)≈(x̂θ(x t)−x t)/tσ2

I Train x̂θ(x t , t) ≈ Eq[x0|x t] (via“denoising score matching”)

2 / 18

Diffusion Set-Up and Notation

I Goal: estimation of q(x0) from samples.

I Noising process: q(x0:T) = q(x0)
∏T

t=1 q(x t | x t−1)
I q(x t | x t−1) = N (x t | x t−1, σ2) for t = 1, . . . ,T
I q(x t) =

∫
N (x t | x0, tσ2)q(x0)dx0

I Idea: generate new samples by “reversing” q... approximately
I xT ∼ q(xT) ≈ N (0,Tσ2)
I x t−1 ∼ q(x t−1|x t) ≈ N (x t−1|x t+σ2∇ log q(x t), σ2)

I Two approximations for q(x t−1 | x t):

1. Gaussian approximation (via Bayes’ rule + Taylor’s theorem)
2. Tweedie’s rule: ∇ log q(x t) ≈ (x̂θ(x t)−x t)/tσ2 =: sθ(x t)

I Train x̂θ(x t , t) ≈ Eq[x0|x t] (via“denoising score matching”)

2 / 18

Diffusion Set-Up and Notation

I Goal: estimation of q(x0) from samples.

I Noising process: q(x0:T) = q(x0)
∏T

t=1 q(x t | x t−1)
I q(x t | x t−1) = N (x t | x t−1, σ2) for t = 1, . . . ,T
I q(x t) =

∫
N (x t | x0, tσ2)q(x0)dx0

I Idea: generate new samples by “reversing” q... approximately
I xT ∼ q(xT) ≈ N (0,Tσ2)
I x t−1 ∼ q(x t−1|x t) ≈ N (x t−1|x t+σ2 sθ(x t) , σ2)

I Two approximations for q(x t−1 | x t):

1. Gaussian approximation (via Bayes’ rule + Taylor’s theorem)
2. Tweedie’s rule: ∇ log q(x t) ≈ (x̂θ(x t)−x t)/tσ2 =: sθ(x t)

I Train x̂θ(x t , t) ≈ Eq[x0|x t] (via“denoising score matching”)

2 / 18

Diffusion Set-Up and Notation

I Goal: estimation of q(x0) from samples.

I Noising process: q(x0:T) = q(x0)
∏T

t=1 q(x t | x t−1)
I q(x t | x t−1) = N (x t | x t−1, σ2) for t = 1, . . . ,T
I q(x t) =

∫
N (x t | x0, tσ2)q(x0)dx0

I Idea: generate new samples by “reversing” q... approximately
I xT ∼ q(xT) ≈ N (0,Tσ2)
I x t−1 ∼ q(x t−1|x t) ≈ N (x t−1|x t+σ2sθ(x t), σ2)

I Two approximations for q(x t−1 | x t):

1. Gaussian approximation (via Bayes’ rule + Taylor’s theorem)
2. Tweedie’s rule: ∇ log q(x t) ≈ (x̂θ(x t)−x t)/tσ2 =: sθ(x t)

I Train x̂θ(x t , t) ≈ Eq[x0|x t] (via“denoising score matching”)

2 / 18

Diffusion Set-Up and Notation

I Goal: estimation of q(x0) from samples.

I Noising process: q(x0:T) = q(x0)
∏T

t=1 q(x t | x t−1)
I q(x t | x t−1) = N (x t | x t−1, σ2) for t = 1, . . . ,T
I q(x t) =

∫
N (x t | x0, tσ2)q(x0)dx0

I Idea: generate new samples by “reversing” q... approximately
I xT ∼ q(xT) ≈ N (0,Tσ2)
I x t−1 ∼ q(x t−1|x t) ≈ N (x t−1|x t+σ2sθ(x t), σ2)

I Two approximations for q(x t−1 | x t):

1. Gaussian approximation (via Bayes’ rule + Taylor’s theorem)
2. Tweedie’s rule: ∇ log q(x t) ≈ (x̂θ(x t)−x t)/tσ2 =: sθ(x t)

I Train x̂θ(x t , t) ≈ Eq[x0|x t] (via“denoising score matching”)

I Diffusion model: pθ(x0:T) = pθ(xT)
∏T

t=1 pθ(x t−1 | x t)

2 / 18

Diffusion Set-Up and Notation

I Goal: estimation of q(x0) from samples.

I Noising process: q(x0:T) = q(x0)
∏T

t=1 q(x t | x t−1)
I q(x t | x t−1) = N (x t | x t−1, σ2) for t = 1, . . . ,T
I q(x t) =

∫
N (x t | x0, tσ2)q(x0)dx0

I Idea: generate new samples by “reversing” q... approximately
I xT ∼ q(xT) ≈ N (0,Tσ2) := pθ(xT)
I x t−1 ∼ q(x t−1|x t) ≈ N (x t−1|x t+σ2sθ(x t), σ2)=: pθ(x t−1|x t)

I Two approximations for q(x t−1 | x t):

1. Gaussian approximation (via Bayes’ rule + Taylor’s theorem)
2. Tweedie’s rule: ∇ log q(x t) ≈ (x̂θ(x t)−x t)/tσ2 =: sθ(x t)

I Train x̂θ(x t , t) ≈ Eq[x0|x t] (via“denoising score matching”)

I Diffusion model: pθ(x0:T) = pθ(xT)
∏T

t=1 pθ(x t−1 | x t)

2 / 18

Importance Sampling for Controlled Generation

Goal: Generate x0 in response to conditioning criteria y

3 / 18

Importance Sampling for Controlled Generation

Goal: Generate x0 in response to conditioning criteria y

1. Augment pθ with y , let pθ(x0:T , y) = pθ(x0:T)p(y | x0) .

3 / 18

Importance Sampling for Controlled Generation

Goal: Generate x0 in response to conditioning criteria y

1. Augment pθ with y , let pθ(x0:T , y) = pθ(x0:T)p(y | x0)

2. Given y ∼ p(y |x0), compute pθ(x0:T |y) .

3 / 18

Importance Sampling for Controlled Generation

Goal: Generate x0 in response to conditioning criteria y

1. Augment pθ with y , let pθ(x0:T , y) = pθ(x0:T)p(y | x0)

2. Given y ∼ p(y |x0), compute pθ(x0:T |y) ∝ pθ(x0:T)p(y | x0) .

3 / 18

Importance Sampling for Controlled Generation

Goal: Generate x0 in response to conditioning criteria y

1. Augment pθ with y , let pθ(x0:T , y) = pθ(x0:T)p(y | x0)

2. Given y ∼ p(y |x0), compute pθ(x0:T |y)︸ ︷︷ ︸
target(ν)

∝ pθ(x0:T)︸ ︷︷ ︸
proposal(p̃)

p(y | x0)︸ ︷︷ ︸
weight(w)

.

Idea: Importance sampling for target ν(x)

I Choose proposal: p̃(x), and weights: w(x) ∝ ν(x)/p̃(x)

3 / 18

Importance Sampling for Controlled Generation

Goal: Generate x0 in response to conditioning criteria y

1. Augment pθ with y , let pθ(x0:T , y) = pθ(x0:T)p(y | x0)

2. Given y ∼ p(y |x0), compute pθ(x0:T |y)︸ ︷︷ ︸
target(ν)

∝ pθ(x0:T)︸ ︷︷ ︸
proposal(p̃)

p(y | x0)︸ ︷︷ ︸
weight(w)

.

Idea: Importance sampling for target ν(x)

I Choose proposal: p̃(x), and weights: w(x) ∝ ν(x)/p̃(x)

Key property: Let P̂K =
∑K

k=1 wkδxk , with xk
iid∼ p̃ and

wk = w(xk)/
∑

w(xk ′). If w(·) is bounded, P̂K → ν as K →∞.

3 / 18

Importance Sampling for Controlled Generation

Goal: Generate x0 in response to conditioning criteria y

1. Augment pθ with y , let pθ(x0:T , y) = pθ(x0:T)p(y | x0)

2. Given y ∼ p(y |x0), compute pθ(x0:T |y)︸ ︷︷ ︸
target(ν)

∝ pθ(x0:T)︸ ︷︷ ︸
proposal(p̃)

p(y | x0)︸ ︷︷ ︸
weight(w)

.

Idea: Importance sampling for target ν(x)

I Choose proposal: p̃(x), and weights: w(x) ∝ ν(x)/p̃(x)

Key property: Let P̂K =
∑K

k=1 wkδxk , with xk
iid∼ p̃ and

wk = w(xk)/
∑

w(xk ′). If w(·) is bounded, P̂K → ν as K →∞.
(i.e. ∀A, lim

K→∞
P̂K (A) =

∫
A ν(x)dx with prob. 1)

3 / 18

Efficiency of Importance Sampling

Problem: Need O(exp{KL(p || p̃)}) samples [Chatterjee and
Diaconis, 2018]

Example: # samples needed for class-conditional generation

I Proposal: p̃(x) = pθ(x0:T) is MNIST diffusion model

I Weight: pθ(y | x0) is classifier for y ∈ {0, . . . , 9} ,

I Target: pθ(x0|y) is images of class y

4 / 18

Efficiency of Importance Sampling

Problem: Need O(exp{KL(p || p̃)}) samples [Chatterjee and
Diaconis, 2018]
Example: # samples needed for class-conditional generation

I Proposal: p̃(x) = pθ(x0:T) is MNIST diffusion model

I Weight: pθ(y | x0) is classifier for y ∈ {0, . . . , 9} ,

I Target: pθ(x0|y) is images of class y

4 / 18

Efficiency of Importance Sampling

Problem: Need O(exp{KL(p || p̃)}) samples [Chatterjee and
Diaconis, 2018]
Example: # samples needed for class-conditional generation

I Proposal: p̃(x) = pθ(x0:T) is MNIST diffusion model

I Weight: pθ(y | x0) is classifier for y ∈ {0, . . . , 9} ,

I Target: pθ(x0|y) is images of class y

4 / 18

Efficiency of Importance Sampling

Problem: Need O(exp{KL(p || p̃)}) samples [Chatterjee and
Diaconis, 2018]
Example: # samples needed for class-conditional generation

I Proposal: p̃(x) = pθ(x0:T) is MNIST diffusion model

I Weight: pθ(y | x0) is classifier for y ∈ {0, . . . , 9} ,

I Target: pθ(x0|y) is images of class y

I What is exp{KL(pθ(x0:T | y) || pθ(x0:T))}?

4 / 18

Efficiency of Importance Sampling

Problem: Need O(exp{KL(p || p̃)}) samples [Chatterjee and
Diaconis, 2018]
Example: # samples needed for class-conditional generation

I Proposal: p̃(x) = pθ(x0:T) is MNIST diffusion model

I Weight: pθ(y | x0) is classifier for y ∈ {0, . . . , 9} ,

I Target: pθ(x0|y) is images of class y

I What is exp{KL(pθ(x0:T | y) || pθ(x0:T))}? ≈ 10.

4 / 18

Efficiency of Importance Sampling

Problem: Need O(exp{KL(p || p̃)}) samples [Chatterjee and
Diaconis, 2018]
Example: # samples needed for class-conditional generation

I Proposal: p̃(x) = pθ(x0:T) is MNIST diffusion model

I Weight: pθ(y | x0) is classifier for y ∈ {0, . . . , 9} ,

I Target: pθ(x0|y) is images of class y

I What is exp{KL(pθ(x0:T | y) || pθ(x0:T))}? ≈ 10.

KL(pθ(x0:T |y) || pθ(x0:T)) =

∫
pθ(x0:T |y) log

pθ(x0:T |y)

pθ(x0:T)
dx0:T

4 / 18

Efficiency of Importance Sampling

Problem: Need O(exp{KL(p || p̃)}) samples [Chatterjee and
Diaconis, 2018]
Example: # samples needed for class-conditional generation

I Proposal: p̃(x) = pθ(x0:T) is MNIST diffusion model

I Weight: pθ(y | x0) is classifier for y ∈ {0, . . . , 9} ,

I Target: pθ(x0|y) is images of class y

I What is exp{KL(pθ(x0:T | y) || pθ(x0:T))}? ≈ 10.

KL(pθ(x0:T |y) || pθ(x0:T)) =

∫
pθ(x0:T |y) log

pθ(x0:T |y)

pθ(x0:T)
dx0:T

4 / 18

Efficiency of Importance Sampling

Problem: Need O(exp{KL(p || p̃)}) samples [Chatterjee and
Diaconis, 2018]
Example: # samples needed for class-conditional generation

I Proposal: p̃(x) = pθ(x0:T) is MNIST diffusion model

I Weight: pθ(y | x0) is classifier for y ∈ {0, . . . , 9} ,

I Target: pθ(x0|y) is images of class y

I What is exp{KL(pθ(x0:T | y) || pθ(x0:T))}? ≈ 10.

KL(pθ(x0:T |y) || pθ(x0:T)) =

∫
pθ(x0:T |y) log

pθ(x0 |y)

pθ(x0)
dx0:T

4 / 18

Efficiency of Importance Sampling

Problem: Need O(exp{KL(p || p̃)}) samples [Chatterjee and
Diaconis, 2018]
Example: # samples needed for class-conditional generation

I Proposal: p̃(x) = pθ(x0:T) is MNIST diffusion model

I Weight: pθ(y | x0) is classifier for y ∈ {0, . . . , 9} ,

I Target: pθ(x0|y) is images of class y

I What is exp{KL(pθ(x0:T | y) || pθ(x0:T))}? ≈ 10.

KL(pθ(x0:T |y) || pθ(x0:T)) =

∫
pθ(x0|y) log

pθ(x0|y)

pθ(x0)
dx0

4 / 18

Efficiency of Importance Sampling

Problem: Need O(exp{KL(p || p̃)}) samples [Chatterjee and
Diaconis, 2018]
Example: # samples needed for class-conditional generation

I Proposal: p̃(x) = pθ(x0:T) is MNIST diffusion model

I Weight: pθ(y | x0) is classifier for y ∈ {0, . . . , 9} ,

I Target: pθ(x0|y) is images of class y

I What is exp{KL(pθ(x0:T | y) || pθ(x0:T))}? ≈ 10.

KL(pθ(x0:T |y) || pθ(x0:T)) =

∫
pθ(x0|y) log

pθ(x0|y)

pθ(x0)
dx0

=

∫
pθ(x0|y) log

p(y |x0)

pθ(y)
dx0

4 / 18

Efficiency of Importance Sampling

Problem: Need O(exp{KL(p || p̃)}) samples [Chatterjee and
Diaconis, 2018]
Example: # samples needed for class-conditional generation

I Proposal: p̃(x) = pθ(x0:T) is MNIST diffusion model

I Weight: pθ(y | x0) is classifier for y ∈ {0, . . . , 9} ,

I Target: pθ(x0|y) is images of class y

I What is exp{KL(pθ(x0:T | y) || pθ(x0:T))}? ≈ 10.

KL(pθ(x0:T |y) || pθ(x0:T)) =

∫
pθ(x0|y) log

pθ(x0|y)

pθ(x0)
dx0

=

∫
pθ(x0|y) log

p(y |x0)

pθ(y)
dx0

= Epθ [log p(y |x0) | y]− log pθ(y)

4 / 18

Efficiency of Importance Sampling

Problem: Need O(exp{KL(p || p̃)}) samples [Chatterjee and
Diaconis, 2018]
Example: # samples needed for class-conditional generation

I Proposal: p̃(x) = pθ(x0:T) is MNIST diffusion model

I Weight: pθ(y | x0) is classifier for y ∈ {0, . . . , 9} ,

I Target: pθ(x0|y) is images of class y

I What is exp{KL(pθ(x0:T | y) || pθ(x0:T))}? ≈ 10.

KL(pθ(x0:T |y) || pθ(x0:T)) =

∫
pθ(x0|y) log

pθ(x0|y)

pθ(x0)
dx0

=

∫
pθ(x0|y) log

p(y |x0)

pθ(y)
dx0

= Epθ [log p(y |x0) | y] − log pθ(y)

4 / 18

Efficiency of Importance Sampling

Problem: Need O(exp{KL(p || p̃)}) samples [Chatterjee and
Diaconis, 2018]
Example: # samples needed for class-conditional generation

I Proposal: p̃(x) = pθ(x0:T) is MNIST diffusion model

I Weight: pθ(y | x0) is classifier for y ∈ {0, . . . , 9} ,

I Target: pθ(x0|y) is images of class y

I What is exp{KL(pθ(x0:T | y) || pθ(x0:T))}? ≈ 10.

KL(pθ(x0:T |y) || pθ(x0:T)) =

∫
pθ(x0|y) log

pθ(x0|y)

pθ(x0)
dx0

=

∫
pθ(x0|y) log

p(y |x0)

pθ(y)
dx0

≈ Epθ [log p(y |x0) | y] − log 1/10

4 / 18

Efficiency of Importance Sampling

Problem: Need O(exp{KL(p || p̃)}) samples [Chatterjee and
Diaconis, 2018]
Example: # samples needed for class-conditional generation

I Proposal: p̃(x) = pθ(x0:T) is MNIST diffusion model

I Weight: pθ(y | x0) is classifier for y ∈ {0, . . . , 9} ,

I Target: pθ(x0|y) is images of class y

I What is exp{KL(pθ(x0:T | y) || pθ(x0:T))}? ≈ 10.

KL(pθ(x0:T |y) || pθ(x0:T)) =

∫
pθ(x0|y) log

pθ(x0|y)

pθ(x0)
dx0

=

∫
pθ(x0|y) log

p(y |x0)

pθ(y)
dx0

≈ Epθ [log p(y |x0) | y] + log 10

4 / 18

Efficiency of Importance Sampling

Problem: Need O(exp{KL(p || p̃)}) samples [Chatterjee and
Diaconis, 2018]
Example: # samples needed for class-conditional generation

I Proposal: p̃(x) = pθ(x0:T) is MNIST diffusion model

I Weight: pθ(y | x0) is classifier for y ∈ {0, . . . , 9} ,

I Target: pθ(x0|y) is images of class y

I What is exp{KL(pθ(x0:T | y) || pθ(x0:T))}? ≈ 10.

KL(pθ(x0:T |y) || pθ(x0:T)) =

∫
pθ(x0|y) log

pθ(x0|y)

pθ(x0)
dx0

=

∫
pθ(x0|y) log

p(y |x0)

pθ(y)
dx0

≈ Epθ [log p(y |x0) | y] + log 10

4 / 18

Efficiency of Importance Sampling

Problem: Need O(exp{KL(p || p̃)}) samples [Chatterjee and
Diaconis, 2018]
Example: # samples needed for class-conditional generation

I Proposal: p̃(x) = pθ(x0:T) is MNIST diffusion model

I Weight: pθ(y | x0) is classifier for y ∈ {0, . . . , 9} ,

I Target: pθ(x0|y) is images of class y

I What is exp{KL(pθ(x0:T | y) || pθ(x0:T))}? ≈ 10.

KL(pθ(x0:T |y) || pθ(x0:T)) =

∫
pθ(x0|y) log

pθ(x0|y)

pθ(x0)
dx0

=

∫
pθ(x0|y) log

p(y |x0)

pθ(y)
dx0

≈ Epθ [log 1] + log 10

4 / 18

Efficiency of Importance Sampling

Problem: Need O(exp{KL(p || p̃)}) samples [Chatterjee and
Diaconis, 2018]
Example: # samples needed for class-conditional generation

I Proposal: p̃(x) = pθ(x0:T) is MNIST diffusion model

I Weight: pθ(y | x0) is classifier for y ∈ {0, . . . , 9} ,

I Target: pθ(x0|y) is images of class y

I What is exp{KL(pθ(x0:T | y) || pθ(x0:T))}? ≈ 10.

KL(pθ(x0:T |y) || pθ(x0:T)) =

∫
pθ(x0|y) log

pθ(x0|y)

pθ(x0)
dx0

=

∫
pθ(x0|y) log

p(y |x0)

pθ(y)
dx0

≈ log 10

4 / 18

Efficiency of Importance Sampling

Problem: Need O(exp{KL(p || p̃)}) samples [Chatterjee and
Diaconis, 2018]
Example: # samples needed for class-conditional generation

I Proposal: p̃(x) = pθ(x0:T) is MNIST diffusion model

I Weight: pθ(y | x0) is classifier for y ∈ {0, . . . , 9} ,

I Target: pθ(x0|y) is images of class y

I What is exp{KL(pθ(x0:T | y) || pθ(x0:T))}? ≈ 10.

KL(pθ(x0:T |y) || pθ(x0:T)) =

∫
pθ(x0|y) log

pθ(x0|y)

pθ(x0)
dx0

=

∫
pθ(x0|y) log

p(y |x0)

pθ(y)
dx0

≈ log 10

Intuition: Roughly 1 in 10 samples will be digit y

4 / 18

A Better Twisted Proposal for Importance Sampling

Ideal proposal: pθ(x0:T |y)

5 / 18

A Better Twisted Proposal for Importance Sampling

Ideal proposal: pθ(x0:T |y)
Challenge: intractable, approximate with some p̃θ(x0:T |y) :

5 / 18

A Better Twisted Proposal for Importance Sampling

Ideal proposal: pθ(x0:T |y)=pθ(xT |y)
∏T

t=1 pθ(x t−1|x t , y)
Challenge: intractable, approximate with some p̃θ(x0:T |y) :

5 / 18

A Better Twisted Proposal for Importance Sampling

Ideal proposal: pθ(x0:T |y)=pθ(xT |y)
∏T

t=1 pθ(x t−1|x t , y)
Challenge: intractable, approximate with some p̃θ(x0:T |y) :

5 / 18

A Better Twisted Proposal for Importance Sampling

Ideal proposal: pθ(x0:T |y)=pθ(xT |y)
∏T

t=1 pθ(x t−1|x t , y)
Challenge: intractable, approximate with some p̃θ(x0:T |y) :

I p̃θ(xT |y) := pθ(xT) ≈ pθ(xT | y)

5 / 18

A Better Twisted Proposal for Importance Sampling

Ideal proposal: pθ(x0:T |y)=pθ(xT |y)
∏T

t=1 pθ(x t−1|x t , y)
Challenge: intractable, approximate with some p̃θ(x0:T |y) :

I p̃θ(xT |y) := pθ(xT) ≈ pθ(xT | y)

5 / 18

A Better Twisted Proposal for Importance Sampling

Ideal proposal: pθ(x0:T |y)=pθ(xT |y)
∏T

t=1 pθ(x t−1|x t , y)
Challenge: intractable, approximate with some p̃θ(x0:T |y) :

I p̃θ(xT |y) := pθ(xT) ≈ pθ(xT | y)

5 / 18

A Better Twisted Proposal for Importance Sampling

Ideal proposal: pθ(x0:T |y)=pθ(xT |y)
∏T

t=1 pθ(x t−1|x t , y)
Challenge: intractable, approximate with some p̃θ(x0:T |y) :

I p̃θ(xT |y) := pθ(xT) ≈ pθ(xT | y)

I p̃θ(x t−1|x t , y):=N (x t−1|x t+σ2[sθ(x t) +∇x t log p̃θ(y |x t)], σ2)
where p̃θ(y | x t) = py |x0(y | x̂θ(x t)) ≈ pθ(y | x t).

5 / 18

A Better Twisted Proposal for Importance Sampling

Ideal proposal: pθ(x0:T |y)=pθ(xT |y)
∏T

t=1 pθ(x t−1|x t , y)
Challenge: intractable, approximate with some p̃θ(x0:T |y) :

I p̃θ(xT |y) := pθ(xT) ≈ pθ(xT | y)

I p̃θ(x t−1|x t , y):=N (x t−1|x t+σ2[sθ(x t) +∇x t log p̃θ(y |x t)], σ2)
where p̃θ(y | x t) = py |x0(y | x̂θ(x t)) ≈ pθ(y | x t).

Three approximations to derive p̃θ(x t−1 | x t , y):
pθ(x t−1 | x t , y) = pθ(x t−1 | x t)pθ(y | x t−1)/pθ(y | x t)

5 / 18

A Better Twisted Proposal for Importance Sampling

Ideal proposal: pθ(x0:T |y)=pθ(xT |y)
∏T

t=1 pθ(x t−1|x t , y)
Challenge: intractable, approximate with some p̃θ(x0:T |y) :

I p̃θ(xT |y) := pθ(xT) ≈ pθ(xT | y)

I p̃θ(x t−1|x t , y):=N (x t−1|x t+σ2[sθ(x t) +∇x t log p̃θ(y |x t)], σ2)
where p̃θ(y | x t) = py |x0(y | x̂θ(x t)) ≈ pθ(y | x t) .

Three approximations to derive p̃θ(x t−1 | x t , y):
pθ(x t−1 | x t , y) = pθ(x t−1 | x t)pθ(y | x t−1)/pθ(y | x t)

1. Likelihood approximation

5 / 18

A Better Twisted Proposal for Importance Sampling

Ideal proposal: pθ(x0:T |y)=pθ(xT |y)
∏T

t=1 pθ(x t−1|x t , y)
Challenge: intractable, approximate with some p̃θ(x0:T |y) :

I p̃θ(xT |y) := pθ(xT) ≈ pθ(xT | y)

I p̃θ(x t−1|x t , y):=N (x t−1|x t+σ2[sθ(x t) +∇x t log p̃θ(y |x t)], σ2)
where p̃θ(y | x t) = py |x0(y | x̂θ(x t)) ≈ pθ(y | x t) .

Three approximations to derive p̃θ(x t−1 | x t , y):

pθ(x t−1 | x t , y)
1
≈ pθ(x t−1 | x t) p̃θ (y | x t−1)/ p̃θ (y | x t)

1. Likelihood approximation

5 / 18

A Better Twisted Proposal for Importance Sampling

Ideal proposal: pθ(x0:T |y)=pθ(xT |y)
∏T

t=1 pθ(x t−1|x t , y)
Challenge: intractable, approximate with some p̃θ(x0:T |y) :

I p̃θ(xT |y) := pθ(xT) ≈ pθ(xT | y)

I p̃θ(x t−1|x t , y):=N (x t−1|x t+σ2[sθ(x t) +∇x t log p̃θ(y |x t)], σ2)
where p̃θ(y | x t) = py |x0(y | x̂θ(x t)) ≈ pθ(y | x t) .

Three approximations to derive p̃θ(x t−1 | x t , y):

pθ(x t−1 | x t , y)
1
≈ pθ(x t−1 | x t) p̃θ (y | x t−1)/ p̃θ (y | x t)

1. Likelihood approximation (p̃θ(y |x0)=p(y |x0) if x̂θ(x0)=x0)

5 / 18

A Better Twisted Proposal for Importance Sampling

Ideal proposal: pθ(x0:T |y)=pθ(xT |y)
∏T

t=1 pθ(x t−1|x t , y)
Challenge: intractable, approximate with some p̃θ(x0:T |y) :

I p̃θ(xT |y) := pθ(xT) ≈ pθ(xT | y)

I p̃θ(x t−1|x t , y):=N (x t−1|x t+σ2[sθ(x t) +∇x t log p̃θ(y |x t)], σ2)
where p̃θ(y | x t) = py |x0(y | x̂θ(x t)) ≈ pθ(y | x t).

Three approximations to derive p̃θ(x t−1 | x t , y):

pθ(x t−1 | x t , y)
1
≈ pθ(x t−1 | x t)p̃θ(y | x t−1)/p̃θ(y | x t)

1. Likelihood approximation (p̃θ(y |x0)=p(y |x0) if x̂θ(x0)=x0)

2. Taylor expand log p̃θ(y |x t−1)
p̃θ(y |x t)

5 / 18

A Better Twisted Proposal for Importance Sampling

Ideal proposal: pθ(x0:T |y)=pθ(xT |y)
∏T

t=1 pθ(x t−1|x t , y)
Challenge: intractable, approximate with some p̃θ(x0:T |y) :

I p̃θ(xT |y) := pθ(xT) ≈ pθ(xT | y)

I p̃θ(x t−1|x t , y):=N (x t−1|x t+σ2[sθ(x t) +∇x t log p̃θ(y |x t)], σ2)
where p̃θ(y | x t) = py |x0(y | x̂θ(x t)) ≈ pθ(y | x t).

Three approximations to derive p̃θ(x t−1 | x t , y):

pθ(x t−1 | x t , y)
1
≈ pθ(x t−1 | x t)p̃θ(y | x t−1)/p̃θ(y | x t)
= pθ(x t−1 | x t) exp{log p̃θ(y | x t−1)/p̃θ(y | x t)}

1. Likelihood approximation (p̃θ(y |x0)=p(y |x0) if x̂θ(x0)=x0)

2. Taylor expand log p̃θ(y |x t−1)
p̃θ(y |x t)

5 / 18

A Better Twisted Proposal for Importance Sampling

Ideal proposal: pθ(x0:T |y)=pθ(xT |y)
∏T

t=1 pθ(x t−1|x t , y)
Challenge: intractable, approximate with some p̃θ(x0:T |y) :

I p̃θ(xT |y) := pθ(xT) ≈ pθ(xT | y)

I p̃θ(x t−1|x t , y):=N (x t−1|x t+σ2[sθ(x t) +∇x t log p̃θ(y |x t)], σ2)
where p̃θ(y | x t) = py |x0(y | x̂θ(x t)) ≈ pθ(y | x t).

Three approximations to derive p̃θ(x t−1 | x t , y):

pθ(x t−1 | x t , y)
1
≈ pθ(x t−1 | x t)p̃θ(y | x t−1)/p̃θ(y | x t)
2
≈ pθ(x t−1 | x t) exp{(x t−1 − x t)∇x t log p̃θ(y | x t)}

1. Likelihood approximation (p̃θ(y |x0)=p(y |x0) if x̂θ(x0)=x0)

2. Taylor expand log p̃θ(y |x t−1)
p̃θ(y |x t) , O((x t−1 − x t)2) error

5 / 18

A Better Twisted Proposal for Importance Sampling

Ideal proposal: pθ(x0:T |y)=pθ(xT |y)
∏T

t=1 pθ(x t−1|x t , y)
Challenge: intractable, approximate with some p̃θ(x0:T |y) :

I p̃θ(xT |y) := pθ(xT) ≈ pθ(xT | y)

I p̃θ(x t−1|x t , y):=N (x t−1|x t+σ2[sθ(x t) +∇x t log p̃θ(y |x t)], σ2)
where p̃θ(y | x t) = py |x0(y | x̂θ(x t)) ≈ pθ(y | x t).

Three approximations to derive p̃θ(x t−1 | x t , y):

pθ(x t−1 | x t , y)
1
≈ pθ(x t−1 | x t)p̃θ(y | x t−1)/p̃θ(y | x t)
2
≈ pθ(x t−1 | x t) exp{(x t−1 − x t)∇x t log p̃θ(y | x t)}

1. Likelihood approximation (p̃θ(y |x0)=p(y |x0) if x̂θ(x0)=x0)

2. Taylor expand log p̃θ(y |x t−1)
p̃θ(y |x t) , O((x t−1 − x t)2) error

5 / 18

A Better Twisted Proposal for Importance Sampling

Ideal proposal: pθ(x0:T |y)=pθ(xT |y)
∏T

t=1 pθ(x t−1|x t , y)
Challenge: intractable, approximate with some p̃θ(x0:T |y) :

I p̃θ(xT |y) := pθ(xT) ≈ pθ(xT | y)

I p̃θ(x t−1|x t , y):=N (x t−1|x t+σ2[sθ(x t) +∇x t log p̃θ(y |x t)], σ2)
where p̃θ(y | x t) = py |x0(y | x̂θ(x t)) ≈ pθ(y | x t).

Three approximations to derive p̃θ(x t−1 | x t , y):

pθ(x t−1 | x t , y)
1
≈ pθ(x t−1 | x t)p̃θ(y | x t−1)/p̃θ(y | x t)
2
≈ pθ(x t−1 | x t) exp{(x t−1 − x t)∇x t log p̃θ(y | x t)}

1. Likelihood approximation (p̃θ(y |x0)=p(y |x0) if x̂θ(x0)=x0)

2. Taylor expand log p̃θ(y |x t−1)
p̃θ(y |x t) , O((x t−1 − x t)2) error

3. “Twist” and complete the square

5 / 18

A Better Twisted Proposal for Importance Sampling

Ideal proposal: pθ(x0:T |y)=pθ(xT |y)
∏T

t=1 pθ(x t−1|x t , y)
Challenge: intractable, approximate with some p̃θ(x0:T |y) :

I p̃θ(xT |y) := pθ(xT) ≈ pθ(xT | y)

I p̃θ(x t−1|x t , y):=N (x t−1|x t+σ2[sθ(x t) +∇x t log p̃θ(y |x t)], σ2)
where p̃θ(y | x t) = py |x0(y | x̂θ(x t)) ≈ pθ(y | x t).

Three approximations to derive p̃θ(x t−1 | x t , y):

pθ(x t−1 | x t , y)
1
≈ pθ(x t−1 | x t)p̃θ(y | x t−1)/p̃θ(y | x t)
2
≈ pθ(x t−1 | x t) exp{(x t−1 − x t)∇x t log p̃θ(y | x t)}
3
≈ N (x t−1|x t+σ2[sθ(x t) +∇x t log p̃θ(y |x t)], σ2)

1. Likelihood approximation (p̃θ(y |x0)=p(y |x0) if x̂θ(x0)=x0)

2. Taylor expand log p̃θ(y |x t−1)
p̃θ(y |x t) , O((x t−1 − x t)2) error

3. “Twist” and complete the square

5 / 18

A Better Twisted Proposal for Importance Sampling

Ideal proposal: pθ(x0:T |y)=pθ(xT |y)
∏T

t=1 pθ(x t−1|x t , y)
Challenge: intractable, approximate with some p̃θ(x0:T |y) :

I p̃θ(xT |y) := pθ(xT) ≈ pθ(xT | y)

I p̃θ(x t−1|x t , y):=N (x t−1|x t+σ2[sθ(x t) +∇x t log p̃θ(y |x t)], σ2)
where p̃θ(y | x t) = py |x0(y | x̂θ(x t)) ≈ pθ(y | x t).

Three approximations to derive p̃θ(x t−1 | x t , y):

pθ(x t−1 | x t , y)
1
≈ pθ(x t−1 | x t)p̃θ(y | x t−1)/p̃θ(y | x t)
2
≈ pθ(x t−1 | x t) exp{(x t−1 − x t)∇x t log p̃θ(y | x t)}
3
≈ N (x t−1|x t+σ2[sθ(x t) +∇x t log p̃θ(y |x t)], σ2)

1. Likelihood approximation (p̃θ(y |x0)=p(y |x0) if x̂θ(x0)=x0)

2. Taylor expand log p̃θ(y |x t−1)
p̃θ(y |x t) , O((x t−1 − x t)2) error

3. “Twist” and complete the square, O(σ2) error

5 / 18

A Better Twisted Proposal for Importance Sampling

Ideal proposal: pθ(x0:T |y)=pθ(xT |y)
∏T

t=1 pθ(x t−1|x t , y)
Challenge: intractable, approximate with some p̃θ(x0:T |y) :

I p̃θ(xT |y) := pθ(xT) ≈ pθ(xT | y)

I p̃θ(x t−1|x t , y):=N (x t−1|x t+σ2[sθ(x t) +∇x t log p̃θ(y |x t)], σ2)
where p̃θ(y | x t) = py |x0(y | x̂θ(x t)) ≈ pθ(y | x t).

Three approximations to derive p̃θ(x t−1 | x t , y):

pθ(x t−1 | x t , y)
1
≈ pθ(x t−1 | x t)p̃θ(y | x t−1)/p̃θ(y | x t)
2
≈ pθ(x t−1 | x t) exp{(x t−1 − x t)∇x t log p̃θ(y | x t)}
3
≈ N (x t−1|x t+σ2[sθ(x t) +∇x t log p̃θ(y |x t)], σ2)

1. Likelihood approximation (p̃θ(y |x0)=p(y |x0) if x̂θ(x0)=x0)

2. Taylor expand log p̃θ(y |x t−1)
p̃θ(y |x t) , O((x t−1 − x t)2) error

3. “Twist” and complete the square, O(σ2) error

Twisted proposal: p̃θ(x0:T |y) = p̃θ(xT |y)
∏T

t=1 p̃θ(x t−1|x t , y)

5 / 18

A Better Twisted Proposal for Importance Sampling

Ideal proposal: pθ(x0:T |y)=pθ(xT |y)
∏T

t=1 pθ(x t−1|x t , y)
Challenge: intractable, approximate with some p̃θ(x0:T |y) :
I p̃θ(xT |y) := pθ(xT) ≈ pθ(xT | y)
I p̃θ(x t−1|x t , y):=N (x t−1|x t+σ2[sθ(x t) +∇x t log p̃θ(y |x t)], σ2)

where p̃θ(y | x t) = py |x0(y | x̂θ(x t)) ≈ pθ(y | x t).
Three approximations to derive p̃θ(x t−1 | x t , y):
pθ(x t−1 | x t , y)

1
≈ pθ(x t−1 | x t)p̃θ(y | x t−1)/p̃θ(y | x t)
2
≈ pθ(x t−1 | x t) exp{(x t−1 − x t)∇x t log p̃θ(y | x t)}
3
≈ N (x t−1|x t+σ2[sθ(x t) +∇x t log p̃θ(y |x t)], σ2)

1. Likelihood approximation (p̃θ(y |x0)=p(y |x0) if x̂θ(x0)=x0)

2. Taylor expand log p̃θ(y |x t−1)
p̃θ(y |x t) , O((x t−1 − x t)2) error

3. “Twist” and complete the square, O(σ2) error

Twisted proposal: p̃θ(x0:T |y) = p̃θ(xT |y)
∏T

t=1 p̃θ(x t−1|x t , y)

Importance weights: w(x0:T) = pθ(x0:T , y)/p̃θ(x0:T | y)
5 / 18

Sequential Monte Carlo & The Twisted Diffusion Sampler

Problem: Error adds up

=⇒ KL(pθ(x0 | y) || p̃θ(x0 | y)) >> 0.
Idea: Gradually correct error as t → 0 (& p̃θ(y |x t)→ pθ(y |x t))
Sequential Monte Carlo (SMC) ingredients

I Series of targets: νt(x
t:T) with ν0(x0:T) = pθ(x0:T | y)

I Proposals: p̃(xT) and p̃(x t | x t+1) for t = 1, . . . ,T − 1
I “Extend” targets as νt(x

0:T) ∝ νt(x t:T)p̃(x0:t−1 | x t)
I Resample at each t with weights: wT (xT) ∝ νT (xT)/p̃(xT)

and wt(x
t , x t+1) ∝ νt(x t , x t+1)/νt+1(x t , x t+1)

Twisted Diffusion Sampler (TDS) is an SMC sampler with:

I νt(x
t:T) ∝ pθ(x t:T)p̃θ(y | x t)

I p̃(xT) = pθ(xT) and p̃(x t | x t+1) = p̃θ(x t | x t+1, y)

I wt(x
t , x t+1)=pθ(x t |x t+1)p̃θ(y |x t)/[p̃θ(x t |x t+1, y)p̃θ(y |x t+1)]

6 / 18

Sequential Monte Carlo & The Twisted Diffusion Sampler

Problem: Error adds up =⇒ KL(pθ(x0 | y) || p̃θ(x0 | y)) >> 0.

Idea: Gradually correct error as t → 0 (& p̃θ(y |x t)→ pθ(y |x t))
Sequential Monte Carlo (SMC) ingredients

I Series of targets: νt(x
t:T) with ν0(x0:T) = pθ(x0:T | y)

I Proposals: p̃(xT) and p̃(x t | x t+1) for t = 1, . . . ,T − 1
I “Extend” targets as νt(x

0:T) ∝ νt(x t:T)p̃(x0:t−1 | x t)
I Resample at each t with weights: wT (xT) ∝ νT (xT)/p̃(xT)

and wt(x
t , x t+1) ∝ νt(x t , x t+1)/νt+1(x t , x t+1)

Twisted Diffusion Sampler (TDS) is an SMC sampler with:

I νt(x
t:T) ∝ pθ(x t:T)p̃θ(y | x t)

I p̃(xT) = pθ(xT) and p̃(x t | x t+1) = p̃θ(x t | x t+1, y)

I wt(x
t , x t+1)=pθ(x t |x t+1)p̃θ(y |x t)/[p̃θ(x t |x t+1, y)p̃θ(y |x t+1)]

6 / 18

Sequential Monte Carlo & The Twisted Diffusion Sampler

Problem: Error adds up =⇒ KL(pθ(x0 | y) || p̃θ(x0 | y)) >> 0.
Idea: Gradually correct error as t → 0

(& p̃θ(y |x t)→ pθ(y |x t))
Sequential Monte Carlo (SMC) ingredients

I Series of targets: νt(x
t:T) with ν0(x0:T) = pθ(x0:T | y)

I Proposals: p̃(xT) and p̃(x t | x t+1) for t = 1, . . . ,T − 1
I “Extend” targets as νt(x

0:T) ∝ νt(x t:T)p̃(x0:t−1 | x t)
I Resample at each t with weights: wT (xT) ∝ νT (xT)/p̃(xT)

and wt(x
t , x t+1) ∝ νt(x t , x t+1)/νt+1(x t , x t+1)

Twisted Diffusion Sampler (TDS) is an SMC sampler with:

I νt(x
t:T) ∝ pθ(x t:T)p̃θ(y | x t)

I p̃(xT) = pθ(xT) and p̃(x t | x t+1) = p̃θ(x t | x t+1, y)

I wt(x
t , x t+1)=pθ(x t |x t+1)p̃θ(y |x t)/[p̃θ(x t |x t+1, y)p̃θ(y |x t+1)]

6 / 18

Sequential Monte Carlo & The Twisted Diffusion Sampler

Problem: Error adds up =⇒ KL(pθ(x0 | y) || p̃θ(x0 | y)) >> 0.
Idea: Gradually correct error as t → 0 (& p̃θ(y |x t)→ pθ(y |x t))

Sequential Monte Carlo (SMC) ingredients

I Series of targets: νt(x
t:T) with ν0(x0:T) = pθ(x0:T | y)

I Proposals: p̃(xT) and p̃(x t | x t+1) for t = 1, . . . ,T − 1
I “Extend” targets as νt(x

0:T) ∝ νt(x t:T)p̃(x0:t−1 | x t)
I Resample at each t with weights: wT (xT) ∝ νT (xT)/p̃(xT)

and wt(x
t , x t+1) ∝ νt(x t , x t+1)/νt+1(x t , x t+1)

Twisted Diffusion Sampler (TDS) is an SMC sampler with:

I νt(x
t:T) ∝ pθ(x t:T)p̃θ(y | x t)

I p̃(xT) = pθ(xT) and p̃(x t | x t+1) = p̃θ(x t | x t+1, y)

I wt(x
t , x t+1)=pθ(x t |x t+1)p̃θ(y |x t)/[p̃θ(x t |x t+1, y)p̃θ(y |x t+1)]

6 / 18

Sequential Monte Carlo & The Twisted Diffusion Sampler

Problem: Error adds up =⇒ KL(pθ(x0 | y) || p̃θ(x0 | y)) >> 0.
Idea: Gradually correct error as t → 0 (& p̃θ(y |x t)→ pθ(y |x t))
Sequential Monte Carlo (SMC) ingredients

I Series of targets: νt(x
t:T) with ν0(x0:T) = pθ(x0:T | y)

I Proposals: p̃(xT) and p̃(x t | x t+1) for t = 1, . . . ,T − 1
I “Extend” targets as νt(x

0:T) ∝ νt(x t:T)p̃(x0:t−1 | x t)
I Resample at each t with weights: wT (xT) ∝ νT (xT)/p̃(xT)

and wt(x
t , x t+1) ∝ νt(x t , x t+1)/νt+1(x t , x t+1)

Twisted Diffusion Sampler (TDS) is an SMC sampler with:

I νt(x
t:T) ∝ pθ(x t:T)p̃θ(y | x t)

I p̃(xT) = pθ(xT) and p̃(x t | x t+1) = p̃θ(x t | x t+1, y)

I wt(x
t , x t+1)=pθ(x t |x t+1)p̃θ(y |x t)/[p̃θ(x t |x t+1, y)p̃θ(y |x t+1)]

6 / 18

Sequential Monte Carlo & The Twisted Diffusion Sampler

Problem: Error adds up =⇒ KL(pθ(x0 | y) || p̃θ(x0 | y)) >> 0.
Idea: Gradually correct error as t → 0 (& p̃θ(y |x t)→ pθ(y |x t))
Sequential Monte Carlo (SMC) ingredients

I Series of targets: νt(x
t:T) with ν0(x0:T) = pθ(x0:T | y)

I Proposals: p̃(xT) and p̃(x t | x t+1) for t = 1, . . . ,T − 1

I “Extend” targets as νt(x
0:T) ∝ νt(x t:T)p̃(x0:t−1 | x t)

I Resample at each t with weights: wT (xT) ∝ νT (xT)/p̃(xT)
and wt(x

t , x t+1) ∝ νt(x t , x t+1)/νt+1(x t , x t+1)

Twisted Diffusion Sampler (TDS) is an SMC sampler with:

I νt(x
t:T) ∝ pθ(x t:T)p̃θ(y | x t)

I p̃(xT) = pθ(xT) and p̃(x t | x t+1) = p̃θ(x t | x t+1, y)

I wt(x
t , x t+1)=pθ(x t |x t+1)p̃θ(y |x t)/[p̃θ(x t |x t+1, y)p̃θ(y |x t+1)]

6 / 18

Sequential Monte Carlo & The Twisted Diffusion Sampler

Problem: Error adds up =⇒ KL(pθ(x0 | y) || p̃θ(x0 | y)) >> 0.
Idea: Gradually correct error as t → 0 (& p̃θ(y |x t)→ pθ(y |x t))
Sequential Monte Carlo (SMC) ingredients

I Series of targets: νt(x
t:T) with ν0(x0:T) = pθ(x0:T | y)

I Proposals: p̃(xT) and p̃(x t | x t+1) for t = 1, . . . ,T − 1
I “Extend” targets as νt(x

0:T) ∝ νt(x t:T)p̃(x0:t−1 | x t)

I Resample at each t with weights: wT (xT) ∝ νT (xT)/p̃(xT)
and wt(x

t , x t+1) ∝ νt(x t , x t+1)/νt+1(x t , x t+1)

Twisted Diffusion Sampler (TDS) is an SMC sampler with:

I νt(x
t:T) ∝ pθ(x t:T)p̃θ(y | x t)

I p̃(xT) = pθ(xT) and p̃(x t | x t+1) = p̃θ(x t | x t+1, y)

I wt(x
t , x t+1)=pθ(x t |x t+1)p̃θ(y |x t)/[p̃θ(x t |x t+1, y)p̃θ(y |x t+1)]

6 / 18

Sequential Monte Carlo & The Twisted Diffusion Sampler

Problem: Error adds up =⇒ KL(pθ(x0 | y) || p̃θ(x0 | y)) >> 0.
Idea: Gradually correct error as t → 0 (& p̃θ(y |x t)→ pθ(y |x t))
Sequential Monte Carlo (SMC) ingredients

I Series of targets: νt(x
t:T) with ν0(x0:T) = pθ(x0:T | y)

I Proposals: p̃(xT) and p̃(x t | x t+1) for t = 1, . . . ,T − 1
I “Extend” targets as νt(x

0:T) ∝ νt(x t:T)p̃(x0:t−1 | x t)
I Resample at each t with weights: wT (xT) ∝ νT (xT)/p̃(xT)

and wt(x
t , x t+1) ∝ νt(x t , x t+1)/νt+1(x t , x t+1)

Twisted Diffusion Sampler (TDS) is an SMC sampler with:

I νt(x
t:T) ∝ pθ(x t:T)p̃θ(y | x t)

I p̃(xT) = pθ(xT) and p̃(x t | x t+1) = p̃θ(x t | x t+1, y)

I wt(x
t , x t+1)=pθ(x t |x t+1)p̃θ(y |x t)/[p̃θ(x t |x t+1, y)p̃θ(y |x t+1)]

6 / 18

Sequential Monte Carlo & The Twisted Diffusion Sampler

Problem: Error adds up =⇒ KL(pθ(x0 | y) || p̃θ(x0 | y)) >> 0.
Idea: Gradually correct error as t → 0 (& p̃θ(y |x t)→ pθ(y |x t))
Sequential Monte Carlo (SMC) ingredients

I Series of targets: νt(x
t:T) with ν0(x0:T) = pθ(x0:T | y)

I Proposals: p̃(xT) and p̃(x t | x t+1) for t = 1, . . . ,T − 1
I “Extend” targets as νt(x

0:T) ∝ νt(x t:T)p̃(x0:t−1 | x t)
I Resample at each t with weights: wT (xT) ∝ νT (xT)/p̃(xT)

and wt(x
t , x t+1) ∝ νt(x t , x t+1)/νt+1(x t , x t+1)

Twisted Diffusion Sampler (TDS) is an SMC sampler with:

I νt(x
t:T) ∝ pθ(x t:T)p̃θ(y | x t)

I p̃(xT) = pθ(xT) and p̃(x t | x t+1) = p̃θ(x t | x t+1, y)

I wt(x
t , x t+1)=pθ(x t |x t+1)p̃θ(y |x t)/[p̃θ(x t |x t+1, y)p̃θ(y |x t+1)]

6 / 18

Sequential Monte Carlo & The Twisted Diffusion Sampler

Problem: Error adds up =⇒ KL(pθ(x0 | y) || p̃θ(x0 | y)) >> 0.
Idea: Gradually correct error as t → 0 (& p̃θ(y |x t)→ pθ(y |x t))
Sequential Monte Carlo (SMC) ingredients

I Series of targets: νt(x
t:T) with ν0(x0:T) = pθ(x0:T | y)

I Proposals: p̃(xT) and p̃(x t | x t+1) for t = 1, . . . ,T − 1
I “Extend” targets as νt(x

0:T) ∝ νt(x t:T)p̃(x0:t−1 | x t)
I Resample at each t with weights: wT (xT) ∝ νT (xT)/p̃(xT)

and wt(x
t , x t+1) ∝ νt(x t , x t+1)/νt+1(x t , x t+1)

Twisted Diffusion Sampler (TDS) is an SMC sampler with:

I νt(x
t:T) ∝ pθ(x t:T)p̃θ(y | x t)

I p̃(xT) = pθ(xT) and p̃(x t | x t+1) = p̃θ(x t | x t+1, y)

I wt(x
t , x t+1)=pθ(x t |x t+1)p̃θ(y |x t)/[p̃θ(x t |x t+1, y)p̃θ(y |x t+1)]

6 / 18

Sequential Monte Carlo & The Twisted Diffusion Sampler

Problem: Error adds up =⇒ KL(pθ(x0 | y) || p̃θ(x0 | y)) >> 0.
Idea: Gradually correct error as t → 0 (& p̃θ(y |x t)→ pθ(y |x t))
Sequential Monte Carlo (SMC) ingredients

I Series of targets: νt(x
t:T) with ν0(x0:T) = pθ(x0:T | y)

I Proposals: p̃(xT) and p̃(x t | x t+1) for t = 1, . . . ,T − 1
I “Extend” targets as νt(x

0:T) ∝ νt(x t:T)p̃(x0:t−1 | x t)
I Resample at each t with weights: wT (xT) ∝ νT (xT)/p̃(xT)

and wt(x
t , x t+1) ∝ νt(x t , x t+1)/νt+1(x t , x t+1)

Twisted Diffusion Sampler (TDS) is an SMC sampler with:

I νt(x
t:T) ∝ pθ(x t:T)p̃θ(y | x t)

I p̃(xT) = pθ(xT) and p̃(x t | x t+1) = p̃θ(x t | x t+1, y)

I wt(x
t , x t+1)=pθ(x t |x t+1)p̃θ(y |x t)/[p̃θ(x t |x t+1, y)p̃θ(y |x t+1)]

6 / 18

The Twisted Diffusion Sampler (TDS)

Algorithm 1: Twisted Diffusion Sampler

xTk ∼ N (0,Tσ2)

wk ← p̃Tk = py |x0(y | x̂θ(xTk))

for t = T , · · · , 1 do

{x tk , p̃tk} ∼ Multinomial ({x tk , p̃tk}; {wk})

x t−1k ∼ p̃θ(·|x tk , y) = N
(
x tk + σ2[sθ(x tk) +∇x tk

log p̃tk], σ2
)

p̃t−1k ← py |x0(y | x̂θ(x t−1k))

wk ← [pθ(x t−1k | x tk) · p̃t−1k]/[p̃θ(x t−1k | x tk , y) · p̃tk]

Return {wk}, {x0k}

7 / 18

Roadmap

I Diffusion models and conditional generation

I The Twisted Diffusion Sampler (TDS)

I Related work

I Properties of TDS (Theory and Simulations)

I Case study in motif-scaffolding

Related Work

Previous works do not accurately approximate conditional
distributions of unconditional models.

I Conditional Training: Used for text-to-image and protein
design. Expensive: data curation, engineering time, compute.

I Replacement guidance [Song et al., 2020]: Widely used for
image inpainting. No guarantees, applies only to inpainting

I Reconstruction guidance [Ho et al., 2022]: Backprop
through the denoising model. No guarantees, can perform
poorly [Zhang et al., 2023]

I Twisted SMC [Whiteley and Lee, 2014, Guarniero et al.,
2017, Heng et al., 2020]: Modify SMC targets and proposals
for improved efficiency. Requires a twisting function —
(choosing it is a contribution of this work)

I SMCDiff [Trippe et al., 2022]: asymptotically accurate for
inpaininting. But assumes p = q and doesn’t support general
likelihoods, or use twisting.

8 / 18

Related Work

Previous works do not accurately approximate conditional
distributions of unconditional models.

I Conditional Training: Used for text-to-image and protein
design.

Expensive: data curation, engineering time, compute.

I Replacement guidance [Song et al., 2020]: Widely used for
image inpainting. No guarantees, applies only to inpainting

I Reconstruction guidance [Ho et al., 2022]: Backprop
through the denoising model. No guarantees, can perform
poorly [Zhang et al., 2023]

I Twisted SMC [Whiteley and Lee, 2014, Guarniero et al.,
2017, Heng et al., 2020]: Modify SMC targets and proposals
for improved efficiency. Requires a twisting function —
(choosing it is a contribution of this work)

I SMCDiff [Trippe et al., 2022]: asymptotically accurate for
inpaininting. But assumes p = q and doesn’t support general
likelihoods, or use twisting.

8 / 18

Related Work

Previous works do not accurately approximate conditional
distributions of unconditional models.

I Conditional Training: Used for text-to-image and protein
design. Expensive: data curation, engineering time, compute.

I Replacement guidance [Song et al., 2020]: Widely used for
image inpainting. No guarantees, applies only to inpainting

I Reconstruction guidance [Ho et al., 2022]: Backprop
through the denoising model. No guarantees, can perform
poorly [Zhang et al., 2023]

I Twisted SMC [Whiteley and Lee, 2014, Guarniero et al.,
2017, Heng et al., 2020]: Modify SMC targets and proposals
for improved efficiency. Requires a twisting function —
(choosing it is a contribution of this work)

I SMCDiff [Trippe et al., 2022]: asymptotically accurate for
inpaininting. But assumes p = q and doesn’t support general
likelihoods, or use twisting.

8 / 18

Related Work

Previous works do not accurately approximate conditional
distributions of unconditional models.

I Conditional Training: Used for text-to-image and protein
design. Expensive: data curation, engineering time, compute.

I Replacement guidance [Song et al., 2020]: Widely used for
image inpainting.

No guarantees, applies only to inpainting

I Reconstruction guidance [Ho et al., 2022]: Backprop
through the denoising model. No guarantees, can perform
poorly [Zhang et al., 2023]

I Twisted SMC [Whiteley and Lee, 2014, Guarniero et al.,
2017, Heng et al., 2020]: Modify SMC targets and proposals
for improved efficiency. Requires a twisting function —
(choosing it is a contribution of this work)

I SMCDiff [Trippe et al., 2022]: asymptotically accurate for
inpaininting. But assumes p = q and doesn’t support general
likelihoods, or use twisting.

8 / 18

Related Work

Previous works do not accurately approximate conditional
distributions of unconditional models.

I Conditional Training: Used for text-to-image and protein
design. Expensive: data curation, engineering time, compute.

I Replacement guidance [Song et al., 2020]: Widely used for
image inpainting. No guarantees, applies only to inpainting

I Reconstruction guidance [Ho et al., 2022]: Backprop
through the denoising model. No guarantees, can perform
poorly [Zhang et al., 2023]

I Twisted SMC [Whiteley and Lee, 2014, Guarniero et al.,
2017, Heng et al., 2020]: Modify SMC targets and proposals
for improved efficiency. Requires a twisting function —
(choosing it is a contribution of this work)

I SMCDiff [Trippe et al., 2022]: asymptotically accurate for
inpaininting. But assumes p = q and doesn’t support general
likelihoods, or use twisting.

8 / 18

Related Work

Previous works do not accurately approximate conditional
distributions of unconditional models.

I Conditional Training: Used for text-to-image and protein
design. Expensive: data curation, engineering time, compute.

I Replacement guidance [Song et al., 2020]: Widely used for
image inpainting. No guarantees, applies only to inpainting

I Reconstruction guidance [Ho et al., 2022]: Backprop
through the denoising model.

No guarantees, can perform
poorly [Zhang et al., 2023]

I Twisted SMC [Whiteley and Lee, 2014, Guarniero et al.,
2017, Heng et al., 2020]: Modify SMC targets and proposals
for improved efficiency. Requires a twisting function —
(choosing it is a contribution of this work)

I SMCDiff [Trippe et al., 2022]: asymptotically accurate for
inpaininting. But assumes p = q and doesn’t support general
likelihoods, or use twisting.

8 / 18

Related Work

Previous works do not accurately approximate conditional
distributions of unconditional models.

I Conditional Training: Used for text-to-image and protein
design. Expensive: data curation, engineering time, compute.

I Replacement guidance [Song et al., 2020]: Widely used for
image inpainting. No guarantees, applies only to inpainting

I Reconstruction guidance [Ho et al., 2022]: Backprop
through the denoising model. No guarantees, can perform
poorly [Zhang et al., 2023]

I Twisted SMC [Whiteley and Lee, 2014, Guarniero et al.,
2017, Heng et al., 2020]: Modify SMC targets and proposals
for improved efficiency. Requires a twisting function —
(choosing it is a contribution of this work)

I SMCDiff [Trippe et al., 2022]: asymptotically accurate for
inpaininting. But assumes p = q and doesn’t support general
likelihoods, or use twisting.

8 / 18

Related Work

Previous works do not accurately approximate conditional
distributions of unconditional models.

I Conditional Training: Used for text-to-image and protein
design. Expensive: data curation, engineering time, compute.

I Replacement guidance [Song et al., 2020]: Widely used for
image inpainting. No guarantees, applies only to inpainting

I Reconstruction guidance [Ho et al., 2022]: Backprop
through the denoising model. No guarantees, can perform
poorly [Zhang et al., 2023]

I Twisted SMC [Whiteley and Lee, 2014, Guarniero et al.,
2017, Heng et al., 2020]: Modify SMC targets and proposals
for improved efficiency.

Requires a twisting function —
(choosing it is a contribution of this work)

I SMCDiff [Trippe et al., 2022]: asymptotically accurate for
inpaininting. But assumes p = q and doesn’t support general
likelihoods, or use twisting.

8 / 18

Related Work

Previous works do not accurately approximate conditional
distributions of unconditional models.

I Conditional Training: Used for text-to-image and protein
design. Expensive: data curation, engineering time, compute.

I Replacement guidance [Song et al., 2020]: Widely used for
image inpainting. No guarantees, applies only to inpainting

I Reconstruction guidance [Ho et al., 2022]: Backprop
through the denoising model. No guarantees, can perform
poorly [Zhang et al., 2023]

I Twisted SMC [Whiteley and Lee, 2014, Guarniero et al.,
2017, Heng et al., 2020]: Modify SMC targets and proposals
for improved efficiency. Requires a twisting function —
(choosing it is a contribution of this work)

I SMCDiff [Trippe et al., 2022]: asymptotically accurate for
inpaininting. But assumes p = q and doesn’t support general
likelihoods, or use twisting.

8 / 18

Related Work

Previous works do not accurately approximate conditional
distributions of unconditional models.

I Conditional Training: Used for text-to-image and protein
design. Expensive: data curation, engineering time, compute.

I Replacement guidance [Song et al., 2020]: Widely used for
image inpainting. No guarantees, applies only to inpainting

I Reconstruction guidance [Ho et al., 2022]: Backprop
through the denoising model. No guarantees, can perform
poorly [Zhang et al., 2023]

I Twisted SMC [Whiteley and Lee, 2014, Guarniero et al.,
2017, Heng et al., 2020]: Modify SMC targets and proposals
for improved efficiency. Requires a twisting function —
(choosing it is a contribution of this work)

I SMCDiff [Trippe et al., 2022]: asymptotically accurate for
inpaininting.

But assumes p = q and doesn’t support general
likelihoods, or use twisting.

8 / 18

Related Work

Previous works do not accurately approximate conditional
distributions of unconditional models.

I Conditional Training: Used for text-to-image and protein
design. Expensive: data curation, engineering time, compute.

I Replacement guidance [Song et al., 2020]: Widely used for
image inpainting. No guarantees, applies only to inpainting

I Reconstruction guidance [Ho et al., 2022]: Backprop
through the denoising model. No guarantees, can perform
poorly [Zhang et al., 2023]

I Twisted SMC [Whiteley and Lee, 2014, Guarniero et al.,
2017, Heng et al., 2020]: Modify SMC targets and proposals
for improved efficiency. Requires a twisting function —
(choosing it is a contribution of this work)

I SMCDiff [Trippe et al., 2022]: asymptotically accurate for
inpaininting. But assumes p = q and doesn’t support general
likelihoods, or use twisting.

8 / 18

TDS: Asymptotic Accuracy and Small Intermediate KLs

Thm 1: Let PK=(
∑

wk)−1
∑

wkδx0k
be the output of K -particle

TDS. PK converges weakly to pθ(x0 | y) as K →∞.

I We require p̃θ(y | x t) to be smooth in x t and bounded.

Thm 2: Set σ2 = σ2∗/T . Then maxt KL(νt || νt+1) < CT−1.

I With more steps, fewer particles are required

Proof sketch:

9 / 18

TDS: Asymptotic Accuracy and Small Intermediate KLs

Thm 1: Let PK=(
∑

wk)−1
∑

wkδx0k
be the output of K -particle

TDS. PK converges weakly to pθ(x0 | y) as K →∞.

I We require p̃θ(y | x t) to be smooth in x t and bounded.

Thm 2: Set σ2 = σ2∗/T . Then maxt KL(νt || νt+1) < CT−1.

I With more steps, fewer particles are required

Proof sketch:

9 / 18

TDS: Asymptotic Accuracy and Small Intermediate KLs

Thm 1: Let PK=(
∑

wk)−1
∑

wkδx0k
be the output of K -particle

TDS. PK converges weakly to pθ(x0 | y) as K →∞.

I We require p̃θ(y | x t) to be smooth in x t and bounded.

Thm 2: Set σ2 = σ2∗/T . Then maxt KL(νt || νt+1) < CT−1.

I With more steps, fewer particles are required

Proof sketch:

9 / 18

TDS: Asymptotic Accuracy and Small Intermediate KLs

Thm 1: Let PK=(
∑

wk)−1
∑

wkδx0k
be the output of K -particle

TDS. PK converges weakly to pθ(x0 | y) as K →∞.

I We require p̃θ(y | x t) to be smooth in x t and bounded.

Thm 2: Set σ2 = σ2∗/T . Then maxt KL(νt || νt+1) < CT−1.

I With more steps, fewer particles are required

Proof sketch:

9 / 18

TDS: Asymptotic Accuracy and Small Intermediate KLs

Thm 1: Let PK=(
∑

wk)−1
∑

wkδx0k
be the output of K -particle

TDS. PK converges weakly to pθ(x0 | y) as K →∞.

I We require p̃θ(y | x t) to be smooth in x t and bounded.

Thm 2: Set σ2 = σ2∗/T . Then maxt KL(νt || νt+1) < CT−1.

I With more steps, fewer particles are required

Proof sketch:

KL(νt || νt+1) = Eνt [log νt(x
0:T)/νt+1(x0:T)]

9 / 18

TDS: Asymptotic Accuracy and Small Intermediate KLs

Thm 1: Let PK=(
∑

wk)−1
∑

wkδx0k
be the output of K -particle

TDS. PK converges weakly to pθ(x0 | y) as K →∞.

I We require p̃θ(y | x t) to be smooth in x t and bounded.

Thm 2: Set σ2 = σ2∗/T . Then maxt KL(νt || νt+1) < CT−1.

I With more steps, fewer particles are required

Proof sketch:

KL(νt || νt+1) = Eνt [logwt(x
t , x t+1)] + logZνt+1/Zνt

9 / 18

TDS: Asymptotic Accuracy and Small Intermediate KLs

Thm 1: Let PK=(
∑

wk)−1
∑

wkδx0k
be the output of K -particle

TDS. PK converges weakly to pθ(x0 | y) as K →∞.

I We require p̃θ(y | x t) to be smooth in x t and bounded.

Thm 2: Set σ2 = σ2∗/T . Then maxt KL(νt || νt+1) < CT−1.

I With more steps, fewer particles are required

Proof sketch:

KL(νt || νt+1) = Eνt [logwt(x
t , x t+1)] + logZνt+1/Zνt

I logwt(x
t , x t+1)=O((x t−x t+1)2+σ2)

9 / 18

TDS: Asymptotic Accuracy and Small Intermediate KLs

Thm 1: Let PK=(
∑

wk)−1
∑

wkδx0k
be the output of K -particle

TDS. PK converges weakly to pθ(x0 | y) as K →∞.

I We require p̃θ(y | x t) to be smooth in x t and bounded.

Thm 2: Set σ2 = σ2∗/T . Then maxt KL(νt || νt+1) < CT−1.

I With more steps, fewer particles are required

Proof sketch:

KL(νt || νt+1) = Eνt [logwt(x
t , x t+1)] + logZνt+1/Zνt

= Eνt [O((x t+1 − x t)2 + σ2)] + logZνt+1/Zνt

I logwt(x
t , x t+1)=O((x t−x t+1)2+σ2)

9 / 18

TDS: Asymptotic Accuracy and Small Intermediate KLs

Thm 1: Let PK=(
∑

wk)−1
∑

wkδx0k
be the output of K -particle

TDS. PK converges weakly to pθ(x0 | y) as K →∞.

I We require p̃θ(y | x t) to be smooth in x t and bounded.

Thm 2: Set σ2 = σ2∗/T . Then maxt KL(νt || νt+1) < CT−1.

I With more steps, fewer particles are required

Proof sketch:

KL(νt || νt+1) = Eνt [logwt(x
t , x t+1)] + logZνt+1/Zνt

= Eνt [O((x t+1 − x t)2 + σ2)] + logZνt+1/Zνt

I logwt(x
t , x t+1)=O((x t−x t+1)2+σ2) Zνt+1 = Zνt +O(σ2)

9 / 18

TDS: Asymptotic Accuracy and Small Intermediate KLs

Thm 1: Let PK=(
∑

wk)−1
∑

wkδx0k
be the output of K -particle

TDS. PK converges weakly to pθ(x0 | y) as K →∞.

I We require p̃θ(y | x t) to be smooth in x t and bounded.

Thm 2: Set σ2 = σ2∗/T . Then maxt KL(νt || νt+1) < CT−1.

I With more steps, fewer particles are required

Proof sketch:

KL(νt || νt+1) = Eνt [logwt(x
t , x t+1)] + logZνt+1/Zνt

= Eνt [O((x t+1 − x t)2 + σ2)] + O(σ2)

I logwt(x
t , x t+1)=O((x t−x t+1)2+σ2) Zνt+1 = Zνt +O(σ2)

9 / 18

TDS: Asymptotic Accuracy and Small Intermediate KLs

Thm 1: Let PK=(
∑

wk)−1
∑

wkδx0k
be the output of K -particle

TDS. PK converges weakly to pθ(x0 | y) as K →∞.

I We require p̃θ(y | x t) to be smooth in x t and bounded.

Thm 2: Set σ2 = σ2∗/T . Then maxt KL(νt || νt+1) < CT−1.

I With more steps, fewer particles are required

Proof sketch:

KL(νt || νt+1) = Eνt [logwt(x
t , x t+1)] + logZνt+1/Zνt

= Eνt [O((x t+1 − x t)2 + σ2)] + O(σ2)

= O(σ2) + O(σ2)

I logwt(x
t , x t+1)=O((x t−x t+1)2+σ2) Zνt+1 = Zνt +O(σ2)

9 / 18

TDS: Asymptotic Accuracy and Small Intermediate KLs

Thm 1: Let PK=(
∑

wk)−1
∑

wkδx0k
be the output of K -particle

TDS. PK converges weakly to pθ(x0 | y) as K →∞.

I We require p̃θ(y | x t) to be smooth in x t and bounded.

Thm 2: Set σ2 = σ2∗/T . Then maxt KL(νt || νt+1) < CT−1.

I With more steps, fewer particles are required

Proof sketch:

KL(νt || νt+1) = Eνt [logwt(x
t , x t+1)] + logZνt+1/Zνt

= Eνt [O((x t+1 − x t)2 + σ2)] + O(σ2)

= O(σ2) + O(σ2) = O(σ2)

I logwt(x
t , x t+1)=O((x t−x t+1)2+σ2) Zνt+1 = Zνt +O(σ2)

9 / 18

TDS: Asymptotic Accuracy and Small Intermediate KLs

Thm 1: Let PK=(
∑

wk)−1
∑

wkδx0k
be the output of K -particle

TDS. PK converges weakly to pθ(x0 | y) as K →∞.

I We require p̃θ(y | x t) to be smooth in x t and bounded.

Thm 2: Set σ2 = σ2∗/T . Then maxt KL(νt || νt+1) < CT−1.

I With more steps, fewer particles are required

Proof sketch:

KL(νt || νt+1) = Eνt [logwt(x
t , x t+1)] + logZνt+1/Zνt

= Eνt [O((x t+1 − x t)2 + σ2)] + O(σ2)

= O(σ2) + O(σ2) = O(σ2) = O(T−1)

I logwt(x
t , x t+1)=O((x t−x t+1)2+σ2) Zνt+1 = Zνt +O(σ2)

9 / 18

Simulation study

Gaussian mixture q(x0)

I Tractable score &
ground truth

I y ∼
Laplace(‖x0‖2, 1)

I Estimand: E[x0 | y = 0]

I O(K−1) convergence for TDS, and
IS

I Guidance is biased.

10 / 18

Simulation study

Gaussian mixture q(x0)

I Tractable score &
ground truth

I y ∼
Laplace(‖x0‖2, 1)

I Estimand: E[x0 | y = 0]

I O(K−1) convergence for TDS, and
IS

I Guidance is biased.

10 / 18

Simulation study

Gaussian mixture q(x0)

I Tractable score &
ground truth

I y ∼
Laplace(‖x0‖2, 1)

I Estimand: E[x0 | y = 0]

I O(K−1) convergence for TDS, and
IS

I Guidance is biased.

10 / 18

Simulation study

Gaussian mixture q(x0)

I Tractable score &
ground truth

I y ∼
Laplace(‖x0‖2, 1)

I Estimand: E[x0 | y = 0]

I O(K−1) convergence for TDS, and
IS

I Guidance is biased.

10 / 18

Simulation study

Gaussian mixture q(x0)

I Tractable score &
ground truth

I y ∼
Laplace(‖x0‖2, 1)

I Estimand: E[x0 | y = 0]

I O(K−1) convergence for TDS, and
IS

I Guidance is biased.

10 / 18

MNIST class-conditional generation

TDS TDS-truncate TDS-IS Guidance IS

Figure: Approximate conditional samples for class y = 7.

11 / 18

Protein Design Case Study: The Motif-Scaffolding Problem

Common protein design workflow1

I Used to design vaccines, enzymes [Procko et al., 2014, Jiang
et al., 2008]

I AlphaFold provides validation predictive of experimental
success [Wang et al., 2022]

I Recent progress with ML methods [Trippe et al., 2022,
Watson et al., 2022], but problem remains open

1figure credit to David Juergens and Doug Tischer
12 / 18

Protein Design Case Study: The Motif-Scaffolding Problem

Common protein design workflow1

I Used to design vaccines, enzymes [Procko et al., 2014, Jiang
et al., 2008]

I AlphaFold provides validation predictive of experimental
success [Wang et al., 2022]

I Recent progress with ML methods [Trippe et al., 2022,
Watson et al., 2022], but problem remains open

1figure credit to David Juergens and Doug Tischer
12 / 18

Protein Design Case Study: The Motif-Scaffolding Problem

Common protein design workflow1

I Used to design vaccines, enzymes [Procko et al., 2014, Jiang
et al., 2008]

I AlphaFold provides validation predictive of experimental
success [Wang et al., 2022]

I Recent progress with ML methods [Trippe et al., 2022,
Watson et al., 2022], but problem remains open

1figure credit to David Juergens and Doug Tischer
12 / 18

Protein Design Case Study: The Motif-Scaffolding Problem

Common protein design workflow1

I Used to design vaccines, enzymes [Procko et al., 2014, Jiang
et al., 2008]

I AlphaFold provides validation predictive of experimental
success [Wang et al., 2022]

I Recent progress with ML methods [Trippe et al., 2022,
Watson et al., 2022], but problem remains open

1figure credit to David Juergens and Doug Tischer
12 / 18

Protein Design Case Study: The Motif-Scaffolding Problem

What makes this problem hard?

13 / 18

Protein Design Case Study: The Motif-Scaffolding Problem

What makes this problem hard?

13 / 18

Protein Design Case Study: The Motif-Scaffolding Problem

What makes this problem hard?

13 / 18

Protein Design Case Study: The Motif-Scaffolding Problem

What makes this problem hard?

Conditional generative
modeling approach [Trippe
et al., 2022]

1. Fit pθ(x) to structures
of native proteins.

2. Sample x∼pθ(x |y), for
pθ(x , y)=pθ(x)δy (xM)

13 / 18

Protein Design Case Study: The Motif-Scaffolding Problem

What makes this problem hard?

Conditional generative
modeling approach [Trippe
et al., 2022]

1. Fit pθ(x) to structures
of native proteins.

2. Sample x∼pθ(x |y), for
pθ(x , y)=pθ(x)δy (xM)

13 / 18

Protein Design Case Study: The Motif-Scaffolding Problem

What makes this problem hard?

Conditional generative
modeling approach [Trippe
et al., 2022]

1. Fit pθ(x) to structures
of native proteins.

2. Sample x∼pθ(x |y), for
pθ(x , y)=pθ(x)δy (xM)

Intuition: If pθ(x) > 0 only if x is a “real” molecule, then
pθ(x | y) > 0 only if x is a “real” molecule containing y .

13 / 18

The Motif-Scaffolding Problem Presents Challenges

I Protein structures live in 3D space and must conform to
physical constraints

14 / 18

The Motif-Scaffolding Problem Presents Challenges

I Protein structures live in 3D space and must conform to
physical constraints → we use equivariant graph neural
networks designed for proteins [Baek and Baker, 2022,
Jumper et al., 2021]

14 / 18

The Motif-Scaffolding Problem Presents Challenges

I Protein structures live in 3D space and must conform to
physical constraints → we use equivariant graph neural
networks designed for proteins [Baek and Baker, 2022,
Jumper et al., 2021]

I Convenient representations are non-Euclidean

14 / 18

The Motif-Scaffolding Problem Presents Challenges

I Protein structures live in 3D space and must conform to
physical constraints → we use equivariant graph neural
networks designed for proteins [Baek and Baker, 2022,
Jumper et al., 2021]

I Convenient representations are non-Euclidean → Riemannian
diffusion [De Bortoli et al., 2022]

14 / 18

The Motif-Scaffolding Problem Presents Challenges

I Protein structures live in 3D space and must conform to
physical constraints → we use equivariant graph neural
networks designed for proteins [Baek and Baker, 2022,
Jumper et al., 2021]

I Convenient representations are non-Euclidean → Riemannian
diffusion [De Bortoli et al., 2022]
I We use an SE (3)N diffusion model [Yim et al., 2023]

14 / 18

The Motif-Scaffolding Problem Presents Challenges

I Protein structures live in 3D space and must conform to
physical constraints → we use equivariant graph neural
networks designed for proteins [Baek and Baker, 2022,
Jumper et al., 2021]

I Convenient representations are non-Euclidean → Riemannian
diffusion [De Bortoli et al., 2022]
I We use an SE (3)N diffusion model [Yim et al., 2023]

I Extra degrees of freedom that are difficult to choose
I Indices of motif within chain
I Rotation & translation of motif

14 / 18

The Motif-Scaffolding Problem Presents Challenges

I Protein structures live in 3D space and must conform to
physical constraints → we use equivariant graph neural
networks designed for proteins [Baek and Baker, 2022,
Jumper et al., 2021]

I Convenient representations are non-Euclidean → Riemannian
diffusion [De Bortoli et al., 2022]
I We use an SE (3)N diffusion model [Yim et al., 2023]

I Extra degrees of freedom that are difficult to choose
I Indices of motif within chain
I Rotation & translation of motif
I We marginalize these out in the twisting function

14 / 18

Motif-Scaffolding Problem — Example Trajectory

I View of x̂θ(x t)
for 9/64
particles.

I Most probable
motif is in
black.

Figure: 9 TDS particles of motif scaffolding
trajectory.

15 / 18

Motif-Scaffolding Problem — Example Trajectory

I View of x̂θ(x t)
for 9/64
particles.

I Most probable
motif is in
black.

Figure: 9 TDS particles of motif scaffolding
trajectory.

15 / 18

Motif-Scaffolding Problem — Example Trajectory

I View of x̂θ(x t)
for 9/64
particles.

I Most probable
motif is in
black.

Figure: 9 TDS particles of motif scaffolding
trajectory.

15 / 18

Motif-Scaffolding Problem — Example Trajectory

I View of x̂θ(x t)
for 9/64
particles.

I Most probable
motif is in
black.

Figure: 9 TDS particles of motif scaffolding
trajectory.

15 / 18

Motif-Scaffolding Problem — Example Results

I Up to ∼5X increase in success rate

I Performance relies on accomodation of degrees of freedom

I Including a multiplicative factor (twist scale) on the twisting
function can improve performance

I On benchmark set, state of the art performance on 9/12
problems with short (< 100 residue) scaffolds.

16 / 18

Motif-Scaffolding Problem — Example Results

I Up to ∼5X increase in success rate

I Performance relies on accomodation of degrees of freedom

I Including a multiplicative factor (twist scale) on the twisting
function can improve performance

I On benchmark set, state of the art performance on 9/12
problems with short (< 100 residue) scaffolds.

16 / 18

Motif-Scaffolding Problem — Effective Sample Size

17 / 18

Twisted Diffusion Sampling (TDS) — Summary

I Accuracy of conditional sampling is a practical limitation of
current controlled generation algorithms for diffusion models.

I Sequential Monte Carlo allows asymptotically exact estimation
of conditional distributions of diffusion probabilistic models.

I Via “Twisting,” heuristic approximations define proposals that
improve efficiency without sacrifing exactness.

I Our implementation, TDS, provides state-of-the-art
performance in protein design

Further Information
Trippe, Brian L.*, Luhuan Wu*, Christian A. Naesseth, John P.
Cunningham, David Blei. ”Practical and Asymptotically Exact
Conditional Sampling in Diffusion Models.” (2023) * equal
contribution briantrippe.com/TDS_prepreprint.pdf.
Contact me: blt2114@columbia.edu

18 / 18

briantrippe.com/TDS_prepreprint.pdf

Twisted Diffusion Sampling (TDS) — Summary

I Accuracy of conditional sampling is a practical limitation of
current controlled generation algorithms for diffusion models.

I Sequential Monte Carlo allows asymptotically exact estimation
of conditional distributions of diffusion probabilistic models.

I Via “Twisting,” heuristic approximations define proposals that
improve efficiency without sacrifing exactness.

I Our implementation, TDS, provides state-of-the-art
performance in protein design

Further Information
Trippe, Brian L.*, Luhuan Wu*, Christian A. Naesseth, John P.
Cunningham, David Blei. ”Practical and Asymptotically Exact
Conditional Sampling in Diffusion Models.” (2023) * equal
contribution briantrippe.com/TDS_prepreprint.pdf.
Contact me: blt2114@columbia.edu

18 / 18

briantrippe.com/TDS_prepreprint.pdf

Twisted Diffusion Sampling (TDS) — Summary

I Accuracy of conditional sampling is a practical limitation of
current controlled generation algorithms for diffusion models.

I Sequential Monte Carlo allows asymptotically exact estimation
of conditional distributions of diffusion probabilistic models.

I Via “Twisting,” heuristic approximations define proposals that
improve efficiency without sacrifing exactness.

I Our implementation, TDS, provides state-of-the-art
performance in protein design

Further Information
Trippe, Brian L.*, Luhuan Wu*, Christian A. Naesseth, John P.
Cunningham, David Blei. ”Practical and Asymptotically Exact
Conditional Sampling in Diffusion Models.” (2023) * equal
contribution briantrippe.com/TDS_prepreprint.pdf.
Contact me: blt2114@columbia.edu

18 / 18

briantrippe.com/TDS_prepreprint.pdf

Twisted Diffusion Sampling (TDS) — Summary

I Accuracy of conditional sampling is a practical limitation of
current controlled generation algorithms for diffusion models.

I Sequential Monte Carlo allows asymptotically exact estimation
of conditional distributions of diffusion probabilistic models.

I Via “Twisting,” heuristic approximations define proposals that
improve efficiency without sacrifing exactness.

I Our implementation, TDS, provides state-of-the-art
performance in protein design

Further Information
Trippe, Brian L.*, Luhuan Wu*, Christian A. Naesseth, John P.
Cunningham, David Blei. ”Practical and Asymptotically Exact
Conditional Sampling in Diffusion Models.” (2023) * equal
contribution briantrippe.com/TDS_prepreprint.pdf.
Contact me: blt2114@columbia.edu

18 / 18

briantrippe.com/TDS_prepreprint.pdf

References
Minkyung Baek and David Baker. Deep learning and protein structure

modeling. Nature methods, 19(1):13–14, 2022.
Sourav Chatterjee and Persi Diaconis. The sample size required in importance

sampling. The Annals of Applied Probability, 28(2):1099–1135, 2018.
Valentin De Bortoli, Emile Mathieu, Michael John Hutchinson, James

Thornton, Yee Whye Teh, and Arnaud Doucet. Riemannian score-based
generative modelling. In Advances in Neural Information Processing
Systems, 2022.

Pieralberto Guarniero, Adam M Johansen, and Anthony Lee. The iterated
auxiliary particle filter. Journal of the American Statistical Association, 112
(520):1636–1647, 2017.

Jeremy Heng, Adrian N Bishop, George Deligiannidis, and Arnaud Doucet.
Controlled sequential Monte Carlo. Annals of Statistics, 48(5), 2020.

Jonathan Ho, Tim Salimans, Alexey A Gritsenko, William Chan, Mohammad
Norouzi, and David J Fleet. Video diffusion models. In Advances in Neural
Information Processing Systems, 2022.

Lin Jiang, Eric A Althoff, Fernando R Clemente, Lindsey Doyle, Daniela
Rothlisberger, Alexandre Zanghellini, Jasmine L Gallaher, Jamie L Betker,
Fujie Tanaka, Carlos F Barbas III, Donald Hilvert, Kendal N Houk, Barry L.
Stoddard, and David Baker. De novo computational design of retro-aldol
enzymes. Science, 319(5868):1387–1391, 2008.

John M. Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael
Figurnov, Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates,
Augustin Źıdek, Anna Potapenko, Alex Bridgland, Clemens Meyer, Simon
A A Kohl, Andy Ballard, Andrew Cowie, Bernardino Romera-Paredes,
Stanislav Nikolov, Rishub Jain, Jonas Adler, Trevor Back, Stig Petersen,
David A. Reiman, Ellen Clancy, Michal Zielinski, Martin Steinegger,
Michalina Pacholska, Tamas Berghammer, Sebastian Bodenstein, David
Silver, Oriol Vinyals, Andrew W. Senior, Koray Kavukcuoglu, Pushmeet
Kohli, and Demis Hassabis. Highly accurate protein structure prediction with
AlphaFold. Nature, 596(7873):583 – 589, 2021.

Erik Procko, Geoffrey Y Berguig, Betty W Shen, Yifan Song, Shani Frayo,
Anthony J Convertine, Daciana Margineantu, Garrett Booth, Bruno E
Correia, Yuanhua Cheng, et al. A computationally designed inhibitor of an
epstein-barr viral bcl-2 protein induces apoptosis in infected cells. Cell, 157
(7):1644–1656, 2014.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar,
Stefano Ermon, and Ben Poole. Score-based generative modeling through
stochastic differential equations. International Conference on Learning
Representations, 2020.

Brian L Trippe, Jason Yim, Doug Tischer, Tamara Broderick, David Baker,
Regina Barzilay, and Tommi Jaakkola. Diffusion probabilistic modeling of
protein backbones in 3D for the motif-scaffolding problem. In International
Conference on Learning Representations, 2022.

Jue Wang, Sidney Lisanza, David Juergens, Doug Tischer, Joseph L Watson,
Karla M Castro, Robert Ragotte, Amijai Saragovi, Lukas F Milles, Minkyung
Baek, et al. Scaffolding protein functional sites using deep learning. Science,
377(6604), 2022.

Joseph L. Watson, David Juergens, Nathaniel R. Bennett, Brian L. Trippe,
Jason Yim, Helen E. Eisenach, Woody Ahern, Andrew J. Borst, Robert J.
Ragotte, Lukas F. Milles, Basile I. M. Wicky, Nikita Hanikel, Samuel J.
Pellock, Alexis Courbet, William Sheffler, Jue Wang, Preetham Venkatesh,
Isaac Sappington, Susana Vázquez Torres, Anna Lauko, Valentin De Bortoli,
Emile Mathieu, Regina Barzilay, Tommi S. Jaakkola, Frank DiMaio,
Minkyung Baek, and David Baker. Broadly applicable and accurate protein
design by integrating structure prediction networks and diffusion generative
models. bioRxiv, 2022.

Nick Whiteley and Anthony Lee. Twisted particle filters. The Annals of
Statistics, 42(1):115–141, 2014.

Jason Yim, Brian L Trippe, Valentin De Bortoli, Emile Mathieu, Arnaud
Doucet, Regina Barzilay, and Tommi Jaakkola. SE (3) diffusion model with
application to protein backbone generation. In International Conference on
Machine Learning, 2023.

Guanhua Zhang, Jiabao Ji, Yang Zhang, Mo Yu, Tommi Jaakkola, and Shiyu
Chang. Towards coherent image inpainting using denoising diffusion implicit
models. arXiv preprint arXiv:2304.03322, 2023.

	Motivation
	Twisted Diffusion Sampler
	Appendix
	References

