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Conditional Sampling for Protein Binder Design

Diffusion models generate protein binders with 10 — 100x higher
success rates than previous methods [WJBTY+, 2022]

Key idea: Learn model of protein structure, design by sampling

from conditional distributions

Challenge: analytical intractability of exact conditionals
» Heuristic guidance [reconstruction & replacement]: inaccurate
» Conditional training: time-consuming, (inaccurate)

We provide: Sequential Monte Carlo for conditional generation.
» Asymptotically exact (in compute cost), general, and delivers

state of the art in silico success rates in protein design.
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Roadmap

» Diffusion models and conditional generation
» The Twisted Diffusion Sampler (TDS)

> Related work

» Properties of TDS (Theory and Simulations)
» Case study in motif-scaffolding
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» Choose proposal: p(x), and weights: w(x) o v(x)/p(x)

Key property: Let Py = Zszl Widy, , With Xxj " p and

wx = w(xk)/ > w(xk ). If w(-) is bounded, Px — v as K — oo.

(i.e. VA, Klim Pk (A) = [, v(x)dx with prob. 1)
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The Twisted Diffusion Sampler (TDS)

Algorithm 1: Twisted Diffusion Sampler
x! ~ N(0, To?)

Wi < Bp = pypo(y | Re(x]))
fort=T,---,1do

[t B} ~ Multinomial ({x{, 6L }; {wi})

st~ B, y) = N (xf + o2lso(x{) + Vg log B, 07

Bt pypoly | 200 )

L wie = IpoCi I xt) - B/ 1B (i | ik y) - B

Return {w}, {x%}

7/18



Roadmap

» Diffusion models and conditional generation
» The Twisted Diffusion Sampler (TDS)

> Related work

» Properties of TDS (Theory and Simulations)
» Case study in motif-scaffolding
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(choosing it is a contribution of this work)

SMCDIfF [Trippe et al., 2022]: asymptotically accurate for
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design. Expensive: data curation, engineering time, compute.
Replacement guidance [Song et al., 2020]: Widely used for
image inpainting. No guarantees, applies only to inpainting
Reconstruction guidance [Ho et al., 2022]: Backprop
through the denoising model. No guarantees, can perform
poorly [Zhang et al., 2023]
Twisted SMC [Whiteley and Lee, 2014, Guarniero et al.,
2017, Heng et al., 2020]: Modify SMC targets and proposals
for improved efficiency. Requires a twisting function —
(choosing it is a contribution of this work)
SMCDIfF [Trippe et al., 2022]: asymptotically accurate for
inpaininting. But assumes p = g and doesn't support general
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> O(K‘l) convergence for TDS, and
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MNIST class-conditional generation
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Figure: Approximate conditional samples for class y = 7.
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Desired Function Functional “Motif” Designed “Scaffold”
g/e.?_.‘ binding) g %
- -~ ol R
Motif Identification Motif-Scaffolding \//

» Used to design vaccines, enzymes [Procko et al., 2014, Jiang
et al., 2008]

» AlphaFold provides validation predictive of experimental
success [Wang et al., 2022]

» Recent progress with ML methods [Trippe et al., 2022,
Watson et al., 2022], but problem remains open

igure credit to David Juergens and Doug Tischer
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Protein Design Case Study: The Motif-Scaffolding Problem

What makes this problem hard?

All Structures (x)

Conditional generative
modeling approach [Trippe
et al., 2022]

Pe(xo)

1. Fit py(x) to structures
of native proteins.

2. Sample x~py(x|y), for
Po(x, y)=pa(x)dy (xm)

Intuition: If py(x) > 0 only if x is a “real” molecule, then

po(x | y) > 0 only if x is a “real” molecule containing y. 51
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physical constraints — we use equivariant graph neural
networks designed for proteins [Baek and Baker, 2022,
Jumper et al., 2021]

» Convenient representations are non-Euclidean — Riemannian
diffusion [De Bortoli et al., 2022]

> We use an SE(3)V diffusion model [Yim et al., 2023]
> Extra degrees of freedom that are difficult to choose

» |ndices of motif within chain
» Rotation & translation of motif
> We marginalize these out in the twisting function

14 /18



Motif-Scaffolding Problem — Example Trajectory

> View of %p(x*)

for 9/64
particles. v %
» Most probable g' \“ %
motif is in
black.

15/18



Motif-Scaffolding Problem — Example Trajectory

> View of %p(x*)

for 9/64
particles. ,
» Most probable & %"
motif is in
black.

15/18



Motif-Scaffolding Problem — Example Trajectory

> View of %p(x*)

for 9/64

particles. ; f;gh
» Most probable = ‘,J

motif is in

black.

£ UG OOUY

15/18



Motif-Scaffolding Problem — Example Trajectory

> View of %p(x*)
for 9/64
particles.

» Most probable
motif is in
black.

15/18



Motif-Scaffolding Problem — Example Results
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Motif-Scaffolding Problem — Example Results

N
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# Particles # Motif Locs. # Motif Rots. Twist Scale

> Up to ~5X increase in success rate

» Performance relies on accomodation of degrees of freedom

» Including a multiplicative factor (twist scale) on the twisting
function can improve performance

» On benchmark set, state of the art performance on 9/12
problems with short (< 100 residue) scaffolds.
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Motif-Scaffolding Problem — Effective Sample Size
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Twisted Diffusion Sampling (TDS) — Summary

» Accuracy of conditional sampling is a practical limitation of
current controlled generation algorithms for diffusion models.

» Sequential Monte Carlo allows asymptotically exact estimation
of conditional distributions of diffusion probabilistic models.

» Via “Twisting,” heuristic approximations define proposals that
improve efficiency without sacrifing exactness.

» Our implementation, TDS, provides state-of-the-art
performance in protein design

Further Information

Trippe, Brian L.*, Luhuan Wu*, Christian A. Naesseth, John P.
Cunningham, David Blei. " Practical and Asymptotically Exact
Conditional Sampling in Diffusion Models.” (2023) * equal
contribution briantrippe.com/TDS_prepreprint.pdf.
Contact me: blt2114@columbia.edu
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