

MIT Computational \& Systems Biology

High-dimensional hierarchical modeling with exchangeability of effects across covariates

Brian L. Trippe
Postdoctoral Fellow
Columbia University

Tamara Broderick

Hilary Finucane

Hierarchical Linear Modeling in High Dimensions

 Example: How do differences in genetics impact Bipolar disorder? Goal: Understand the many contributing factors \rightarrow linear models

Challenges:

Hierarchical Linear Modeling in High Dimensions

 Example: How do differences in genetics impact Bipolar disorder?Goal: Understand the many contributing factors \rightarrow linear models

Challenges: Uncertainty, multiple groups of data \rightarrow hierarchical Bayes This Talk: In high-dimensions (\#Covariates > \# Datasets)

Hierarchical Linear Modeling in High Dimensions

This Talk: In high-dimensions (\#Covariates > \# Datasets)

1. Standard approach (e.g. lme4) fails (worse than non-hierarchical!)
2. Unconventional use of exchangeability is more intuitive \& accurate

- Background \& Notation
- Linear models
- Bayesian inference
- Modeling in high dimensions

Roadmap

- Our method: exchangeability of effects across covariates (rather than within datasets)
- Fast algorithms for inference in the new model
- Benefits of our method in high dimensions (theory and empirics)

Background and Notation: Linear Modeling

Example in education: Relate student participation in free lunch program to academic performance.

For each student $n=1,2, \ldots, N$

Change in
$\underset{\substack{\text { ("Response") }}}{\text { Performance }} \rightarrow Y_{n}=X_{n} \beta+\epsilon_{n}$
Other Factors ("Residual")

What if we have data from multiple schools? (e.g. in Cambridge, Boston and Dallas)

Analysis Options:

1. Combine all data together -- ignores differences
2. Analyze independently -- worse performance if data limited
3. Partial pooling via hierarchical Bayesian modeling

Background and Notation: Bayesian Inference

Prior

$p(\beta \mid Y) \propto p(\beta) p(\boldsymbol{Y} \mid \boldsymbol{\beta}) \quad$ Likelihood

- Subjective beliefs before seeing data \rightarrow probabilities
- Codify assumptions about dataset similarity

Posterior

- Bayes Rule: update beliefs after seeing data
- Computational step (requires algorithms)

Empirical Bayes

- Use data to automate choice of prior
- "Learn" extent of partial pooling, less subjective

Background and Notation: Multiple Covariates

What if we have multiple covariates for each student?

- E.g. playing a sport, past performance, demographics
- For each school $g=1,2, \ldots, G$ and each student $n=1,2, \ldots, N^{g}$

D = \# Covariates (student attributes)
G = \# Datasets (schools)
$\mathrm{N}^{\mathrm{g}}=$ \# Samples in dataset g (students)

Question: What prior do we put on this matrix?

Choosing $p(\beta)$: Exchangeability Across Datasets vs. Covariates

Standard approach (Lindley and Smith, 1972)

- Assume exchangeability across datasets
- Model correlations in β across covariates $\Gamma(\mathrm{D} \times \mathrm{D}$ matrix $)$
More formally: Assume "exchangeability" β is a priori exchangeable across datasets if for every G-permutation σ,

$$
p\left(\beta^{1}, \beta^{2}, \ldots, \beta^{G}\right)=p\left(\beta^{\sigma(1)}, \beta^{\sigma(2)}, \ldots, \beta^{\sigma(G)}\right) .
$$

- De Finetti: model β^{g} 's as conditionally i.i.d.
- Convenient choice: $\beta^{g} \sim N(\xi, \Gamma)$
(via empirical Bayes)

- Ubiquitous in software (lme4) and pedagogy [Bates et al., 2015] [Gelman, et al., 2013]
Limitations when $\mathrm{D} \gg \mathrm{G}$
- Less intuitive (Cambridge, Boston \& Dallas are not equally similar)
- $\mathrm{O}\left(\mathrm{D}^{2}\right)$ parameters [statistical \& computational]
- Poor estimation accuracy

Choosing $p(\beta)$: Exchangeability Across Datasets vs. Covariates Standard approach (Lindley and Smith, 1972)

- Assume exchangeability across datasets
- Model correlations in β across covariates \ ${ }^{\lambda}(\mathrm{D} \times \mathrm{D}$ matrix $)$
- Specific choice: $\beta^{g} \sim N(\xi, Г)$

Our approach [TFB2021]

- Assume exchangeability across covariates
- Model correlations in β across datasets

$$
\Sigma_{\Sigma(\mathrm{G} \times \mathrm{G} \text { matrix })}
$$

- Specific choice: $\beta_{d} \sim N(\mu, \Sigma)$

Details to fill in to use the new model:

- Need practical algorithms: posterior inference, empirical Bayes
- Need theory \& experiments: justify whether this is effective

Choosing $p(\beta)$: Correlations Across Datasets vs. Covariates

In high dimensions ($\mathrm{D}>\mathrm{G}$)

- Standard approach does worse than independent analyses.
- lme 4 does not run when $\mathrm{D}>\mathrm{G}$
- Exchangeable across covariates effectively shares information.
- Though conceptually similar, different dependence on dimension
- Background \& Notation
- Linear models
- Bayesian inference
- Modeling in high dimensions
- Our method: models correlations across

Roadmap

 datasets (rather than within datasets)- Fast algorithms for inference in the new model
- Benefits of our method in high dimensions (theory and empirics)

Inference under Exchangeability Across Covariates

Prior:

For each covariate d :

$$
\beta_{d} \sim N(0, \Sigma)
$$

Likelihood:
For dataset g and datapoint n :

$$
Y_{n}^{g} \mid \beta^{g} \sim N\left(X_{n}^{g} \beta^{g}, \sigma^{2}\right)
$$

```
D = # Covariates
G = # Datasets
Ng}=#\mathrm{ Samples in dataset g
```


Posterior:

Estimate β as posterior mean:

$$
\hat{\beta}_{\mathrm{ECov}}=\int \beta p(\beta \mid Y) d \beta
$$

Gaussian conjugacy \rightarrow analytic form for $\hat{\beta}_{\mathrm{ECov}}$

- Catch: High-dimensional linear system with G•D parameters
- We show: tractable via the conjugate gradient algorithm

Use empirical Bayes to estimate dataset relatedness

$$
\widehat{\boldsymbol{\Sigma}}=\underset{\boldsymbol{\Sigma}}{\arg \max } \boldsymbol{p}\left(\boldsymbol{Y}^{\mathbf{1}}, \boldsymbol{Y}^{\mathbf{2}}, \ldots, \boldsymbol{Y}^{\boldsymbol{G}} \mid \boldsymbol{\Sigma}\right)
$$

- We develop an expectation maximization algorithm

Is this new method better in high dimensions?

Estimation Procedure

1. Empirical Bayes (EM to choose Σ).
2.Posterior Inference: $\hat{\beta}_{\mathrm{ECov}}=\mathbb{E}[\beta \mid Y ; \Sigma]$ $\underline{\text { Simulation Set-Up }}$
2. Draw effects from prior: $\beta_{d} \sim N(0, \Sigma)$
3. Sample $Y \sim p(Y \mid \beta)$, many times
4. Estimate $\underbrace{\mathbb{E}_{Y \mid \beta}\left[\sum_{g} \sum_{d}\left(\hat{\beta}_{d}^{g}-\beta_{d}^{g}\right)^{2}\right]}$
"Risk": $R(\hat{\beta}, \beta)$
How do we assess if this works more generally?
\# of Covariates
Idea 1: Simula β. Infinitely many β - can't try them all!
Idea 2: Use real data. We'll get there, but same problem.
Idea 3: Use theory! Under what conditions on β can we prove $R\left(\hat{\beta}_{\mathrm{ECov}}, \beta\right)$ is small?

Challenge: $R\left(\hat{\beta}_{\mathrm{ECov}}, \beta\right)$ is the integral of non-differentiable function of a matrix.

Is this new method better in high dimensions?

Theorem (Domination over Least Squares) [TFB2021]:
If $D>2 G+2$, and each X^{g} is well-conditioned, then for any β $R\left(\hat{\beta}_{\text {ECov }}, \beta\right)<R\left(\hat{\beta}_{\text {LeastSquares }}, \beta\right)<R\left(\hat{\beta}_{\text {EData }}, \beta\right)$.

- In high dimensions, $\hat{\beta}_{\text {ECov }}$ does well
- Better to capture correlations across datasets
- Our approach reduces risk regardless of β !

Still unresolved: Risk improvement size? Boost from combining groups?

- Consider $R\left(\hat{\beta}_{\text {ECov }}, \beta\right)-R\left(\hat{\beta}_{\text {ECovindep }}, \beta\right)$
[$\hat{\beta}_{\text {ECov }}$ on each dataset separately]
But... $R\left(\hat{\beta}_{\mathrm{ECov}}, \beta\right)$ depends on non-central Wishart eigenvalues - Intractable! Make comparison tractable by reformulating problem:
- Consider asymptotics in \# of covariates $(D \rightarrow \infty)$.
- Bayesian analysis: $\beta_{d} \sim N\left(0, \Sigma^{*}\right)$, consider $R_{\Sigma^{*}}(\hat{\beta}):=\mathbb{E}[R(\hat{\beta}, \beta)]$

$$
\begin{aligned}
& \text { Theorem (Asymptotic Gain of Joint Modeling) [TFB2021]: } \\
& \lim _{D \rightarrow \infty} \frac{R_{\Sigma^{*}}\left(\hat{\beta}_{\mathrm{ECovln}}\right)}{D}-R_{\Sigma^{*}}\left(\hat{\beta}_{\mathrm{ECov}}\right) \geq \frac{\left\|\operatorname{diag}\left(\Sigma^{*}\right)^{\downarrow}-\lambda\left(\Sigma^{*}\right)^{\downarrow}\right\|_{2}^{2}}{\left(1+\left\|\Sigma^{*}\right\|_{2}\right)^{3}} \geq 0
\end{aligned}
$$

- Distance between the eigenvalues vs. diagonals of Σ^{*} determines sharing.

Exch. Cov. Performance in Diverse Applications

Challenge: in real data - can't check accuracy of effect

 estimation.- We use prediction performance as a proxy for estimation
- We evaluate Mean Squared Error [MSE] with 5-fold cross validation

In diverse applications, exchangeability across covariates improves predictions.

Conclusions

Today: I showed modeling correlations across datasets performs better in high dimensions.

Primary Reference:
Trippe, Finucane, Broderick (2021) "For high-dimensional hierarchical models, consider exchangeability of effects across covariates instead of across datasets" In Neural Information Processing Systems

Contact me: blt2114@columbia.edu

