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Bipolar Disorder

Control (Healthy)
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ACTGACTGACCGGACTGGACTG ᐧ ᐧ ᐧ ᐧ ᐧ ᐧ ᐧ
ACTGACTGACCGGTCTGAACTG ᐧ ᐧ ᐧ ᐧ ᐧ ᐧ ᐧ
ACTGCCTGAGCGGACTGGATGG ᐧ ᐧ ᐧ ᐧ ᐧ ᐧ ᐧ
ACTGACTGTCCGGACTGGACTG ᐧ ᐧ ᐧ ᐧ ᐧ ᐧ ᐧ

ACCGACTGACCTTACTAGACTG ᐧ ᐧ ᐧ ᐧ ᐧ ᐧ ᐧ
CTCGACCGACCGGACTAGATTG ᐧ ᐧ ᐧ ᐧ ᐧ ᐧ ᐧ
ACCGACCTACCGTACTGGACGG ᐧ ᐧ ᐧ ᐧ ᐧ ᐧ ᐧ
ACTGACCGACGGTACTAGACTG ᐧ ᐧ ᐧ ᐧ ᐧ ᐧ ᐧ

Hierarchical Linear Modeling in High Dimensions
Example: How do differences in genetics impact Bipolar disorder?
Goal: Understand the many contributing factors à linear models

Challenges:
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……

ACTGACTGACTGGACTGGACTG
ACTGACTGCCTGGACTGGACTG
ACTGACTGACTGGACTGGACTG
ACTGACTTACTGGACTGGACTG

Schizophrenia

…

ACTGACTGACTGGACTGGACTG
ACTGACTGCCTGGACTGGACTG
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…
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Anorexia
…

Bipolar Disorder

Control (Healthy)
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à hierarchical Bayes, multiple groups of data
This Talk: In high-dimensions (#Covariates > # Datasets)

Challenges: Uncertainty



Hierarchical Linear Modeling in High Dimensions
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This Talk: In high-dimensions (#Covariates > # Datasets)
1. Standard approach (e.g.lme4) fails (worse than non-hierarchical!) 
2. Unconventional use of exchangeability is more intuitive & accurate
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Roadmap

•Background & Notation
• Linear models
• Bayesian inference
• Modeling in high dimensions

• Our method: exchangeability of effects 
across covariates (rather than within 
datasets)

• Fast algorithms for inference in the 
new model

•Benefits of our method in high 
dimensions (theory and empirics)



Other Factors
(“Residual”)

+ 𝜖!
"

= !1 if in program
0 otherwise

= 𝑋!
"

Participation
(“Covariate”)

𝑌!
"Change in 

Performance
(“Response”)

Example in education: Relate student participation in free lunch 
program to academic performance.

For each student 𝑛 = 1,2, … ,𝑁!

Background and Notation: Linear Modeling

What if we have data from multiple schools? 
(e.g. in Cambridge, Boston and Dallas)

in school 𝑔 = 1,2, … , 𝐺

“Effect”

𝛽"

Analysis Options:
1. Combine all data together 
2. Analyze independently
3. Partial pooling via hierarchical Bayesian modeling

-- worse performance if data limited
-- ignores differences
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Background and Notation: Bayesian Inference

Empirical
Bayes

• Use data to automate choice of prior
• “Learn” extent of partial pooling, less subjective

• Subjective beliefs before 
seeing data à probabilities

• Codify assumptions about 
dataset similarity 

• Bayes Rule: update beliefs after seeing data
• Computational step (requires algorithms)

Prior 𝒑 𝜷

𝛽!"#$%&'() − 𝛽*+,-+.
Posterior

𝒑 𝜷 𝒀 ∝ Likelihood𝒑 𝒀 𝜷
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- For each school 𝑔 = 1,2, … , 𝐺 and each student 𝑛 = 1,2, … ,𝑁!

𝑌!
" = #

#$%

&

𝑋!,#
" 𝛽#

" + 𝜖!
"

CovariatesResponse

Effects

Residual

D = # Covariates (student attributes)
G = # Datasets      (schools)
Ng = # Samples in dataset g (students)

Background and Notation: Multiple Covariates

Question: What prior do we put on this matrix?

What if we have multiple covariates for each student?
- E.g. playing a sport, past performance, demographics

G Datasets

D
 C

ovariates

𝛽= G
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G Datasets
Standard approach (Lindley and Smith, 1972)
- Assume exchangeability across datasets 
- Model correlations in 𝛽 across covariates

More formally: Assume “exchangeability”
𝛽 is a priori exchangeable across datasets if for
every G-permutation 𝜎,

𝑝 𝛽", 𝛽#, … , 𝛽$ = 𝑝 𝛽% " , 𝛽% # , … , 𝛽% $ .
- De Finetti: model 𝛽!’s as conditionally i.i.d.
- Convenient choice: 𝛽! ∼ 𝑁(𝜉, Γ)

(via empirical Bayes)
- Ubiquitous in software (lme4)

D
 C

ovariates
Choosing 𝑝 𝛽 : Exchangeability Across Datasets vs. Covariates

Limitations when D>>G
- Less intuitive 
- O(D2) parameters [statistical & computational]
- Poor estimation accuracy

G

[Bates et al., 2015]

Γ (D×Dmatrix)

[Gelman, et al., 2013]
and pedagogy

(Cambridge, Boston & Dallas are not equally similar)
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G Datasets

D
 C

ovariates

Standard approach (Lindley and Smith, 1972)
- Assume exchangeability across datasets
- Model correlations in 𝛽 across covariates

- Specific choice: 𝛽! ∼ 𝑁(𝜉, Γ)

Our approach [TFB2021]
- Assume exchangeability across covariates
- Model correlations in 𝛽 across datasets

- Specific choice: 𝛽& ∼ 𝑁(𝜇, Σ)

Details to fill in to use the new model:
- Need practical algorithms: posterior inference, empirical Bayes
- Need theory & experiments: justify whether this is effective

Σ (G×Gmatrix)

Γ (D×Dmatrix)
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Choosing 𝑝 𝛽 : Exchangeability Across Datasets vs. Covariates
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approach

Independent
Analyses

Standard
[LS1972]

In high dimensions (D>G)
• Standard approach does worse than 

independent analyses.
• lme4 does not run when D>G

• Exchangeable across covariates
effectively shares information.

Choosing 𝑝 𝛽 : Correlations Across Datasets vs. Covariates
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• Though conceptually similar, different dependence on dimension
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Roadmap

•Background & Notation
• Linear models
• Bayesian inference
• Modeling in high dimensions

• Our method: models correlations across 
datasets (rather than within datasets)

• Fast algorithms for inference in the 
new model

•Benefits of our method in high 
dimensions (theory and empirics)



Inference under Exchangeability Across Covariates G Datasets
D
C
ovariates

Prior:
For each covariate 𝑑:  
𝛽/ ∼ 𝑁(0, Σ)

• Catch: High-dimensional linear system with G⋅D parameters
• We show: tractable via the conjugate gradient algorithm

D  = # Covariates
G  = # Datasets
Ng = # Samples in dataset g

Likelihood:
For dataset 𝑔 and datapoint 𝑛:
𝑌0
1 | 𝛽1 ∼ 𝑁(𝑋0

1𝛽1 , 𝜎2)

Posterior:
Estimate 𝛽 as posterior mean:

7𝛽3!+4 = ∫ 𝛽 𝑝 𝛽 𝑌 𝑑𝛽

Gaussian conjugacy à analytic form for 8𝛽!"#$

G
⋅D

E
ff
ec

ts

[Bishop, 2006 – Chapter 3.3]

Use empirical Bayes to estimate dataset relatedness
;𝚺 = arg max

𝚺
𝒑(𝒀𝟏, 𝒀𝟐, … , 𝒀𝑮 ∣ 𝚺)

• We develop an expectation maximization algorithm 10



Is this new method better in high dimensions?
Estimation Procedure
1.Empirical Bayes (EM to choose Σ).
2.Posterior Inference: 8𝛽!"#$ = 𝔼[𝛽|𝑌; Σ]
Simulation Set-Up
1. Draw effects from prior: 𝛽% ∼ 𝑁 0, Σ
2. Sample 𝑌 ∼ 𝑝 𝑌 𝛽)
3. Estimate ∑&∑% 8𝛽%

& − 𝛽%
& '
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Infinitely many 𝛽 – can’t try them all!Idea 1: Simulate for various 𝛽.
Idea 2: Use real data. 
Idea 3: Use theory!

, many times

“Risk”:  𝑅 8𝛽, 𝛽

𝔼!|#
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We’ll get there, but same problem.
Under what conditions on 𝛽 can we prove

𝑅 8𝛽!"#$, 𝛽 is small?
Challenge: 𝑅 8𝛽!"#$, 𝛽 is the integral of non-differentiable 
function of a matrix.

How do we assess if this works more generally?



• In high dimensions, 5𝛽'()* does well and 5𝛽'+,-, does poorly
• Better to capture correlations across datasets

• Our approach reduces risk regardless of 𝛽!
Still unresolved: Risk improvement size? Boost from combining groups?

- Consider 𝑅 5𝛽'()*, 𝛽 − 𝑅 5𝛽'()*./012, 𝛽

But… 𝑅 5𝛽'()*, 𝛽 depends on non-central Wishart eigenvalues – Intractable!

Theorem (Domination over Least Squares) [TFB2021]:
If 𝐷 > 2𝐺 + 2, and each 𝑋& is well-conditioned, then for any 𝛽

𝑅 8𝛽!"#$, 𝛽 < 𝑅 8𝛽()*+,-./*0)+, 𝛽 < 𝑅 8𝛽!1*,*, 𝛽 .

Make comparison tractable by reformulating problem:
• Consider asymptotics in # of covariates (𝐷 → ∞).
• Bayesian analysis:

Theorem (Asymptotic Gain of Joint Modeling) [TFB2021]:

lim
9 →;

𝑅<∗ 7𝛽3!+4=.')> − 𝑅<∗ 7𝛽3!+4
𝐷

- Distance between the eigenvalues vs. diagonals of Σ∗ determines sharing.

≥
||𝑑𝑖𝑎𝑔 Σ∗ ↓ − 𝜆 Σ∗ ↓||22

1 + ||Σ∗||2 A ≥ 0≥ 0

[ 7𝛽3!+4 on each dataset separately]

𝛽& ∼ 𝑁(0, Σ∗), consider 𝑅4∗ 5𝛽 := 𝔼[𝑅 5𝛽, 𝛽 ]

Is this new method better in high dimensions?
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Challenge: in real data – can’t check accuracy of effect 
estimation.
- We use prediction performance as a proxy for estimation
- We evaluate Mean Squared Error [MSE] with 5-fold cross validation

N ≈ 500 Communities
D = 117  Demographic 

Attributes
G = 4  Regions/Charges

Community Level 
Law Enforcement

N ≈ 500 Blog posts
D =  279 Characteristics 

of posts
G =  3   Corpora

Blog Post
Engagement

N ≈ 100 Images
D  = 128   Dimensions of  

latent embedding 
G  = 8       Tasks

Transfer Learning on 
CIFAR10 Classification

Exch. Cov. Performance in Diverse Applications

Least Squares Pooled

Least Squares

Exch. Cov. Indep.

In diverse applications, exchangeability across covariates improves 
predictions. 13



Conclusions

Primary Reference:
Trippe, Finucane, Broderick (2021) “For high-dimensional hierarchical models, 
consider exchangeability of effects across covariates instead of across datasets” In 
Neural Information Processing Systems 
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Today: I showed modeling 
correlations across datasets performs 
better in high dimensions.

Contact me: blt2114@columbia.edu 14


