

High-dimensional hierarchical modeling with exchangeability of effects across covariates

Brian L. Trippe Postdoctoral Fellow Columbia University

Tamara Broderick

Hilary Finucane

Hierarchical Linear Modeling in High Dimensions

Example: How do differences in genetics impact Bipolar disorder? **Goal:** Understand the many contributing factors \rightarrow linear models

Challenges:

Hierarchical Linear Modeling in High Dimensions

Example: How do differences in genetics impact Bipolar disorder? **Goal:** Understand the many contributing factors \rightarrow linear models

Challenges: Uncertainty, multiple groups of data \rightarrow hierarchical Bayes **This Talk:** In high-dimensions (#Covariates > # Datasets)

Hierarchical Linear Modeling in High Dimensions

This Talk: In high-dimensions (#Covariates > # Datasets)

- 1. Standard approach (e.g. lme4) fails (worse than non-hierarchical!)
- 2. Unconventional use of exchangeability is more intuitive & accurate

Roadmap

- Background & Notation
 - Linear models
 - Bayesian inference
 - Modeling in high dimensions
- Our method: exchangeability of effects across covariates (rather than within datasets)
- Fast algorithms for inference in the new model
- Benefits of our method in high dimensions (theory and empirics)

Background and Notation: Linear Modeling

Example in education: Relate student participation in free lunch program to academic performance.

For each student n = 1, 2, ..., N

What if we have data from multiple schools? (e.g. in Cambridge, Boston and Dallas)

Analysis Options:

- 1. Combine all data together -- ignores differences
- 2. Analyze independently -- worse performance if data limited
- 3. Partial pooling via hierarchical Bayesian modeling

Background and Notation: Bayesian Inference

Prior

$p(\beta | Y) \propto p(\beta) p(Y|\beta)$ Likelihood

- Subjective beliefs before seeing data \rightarrow probabilities
- Codify assumptions about dataset similarity

Posterior

- Bayes Rule: update beliefs after seeing data
- Computational step (requires algorithms)

Empirical Bayes

- Use data to automate choice of prior
- "Learn" extent of partial pooling, less subjective

Background and Notation: Multiple Covariates

What if we have multiple covariates for each student?- E.g. playing a sport, past performance, demographics

- For each school $g=1,2,\ldots,G$ and each student $n=1,2,\ldots,N^g$

Question: What prior do we put on this matrix?

Choosing $p(\beta)$: Exchangeability Across Datasets vs. Covariates

Standard approach (Lindley and Smith, 1972)

- Assume exchangeability across datasets
- Model correlations in β across covariates Γ (D×D matrix)

 $\frac{\text{More formally:}}{\beta \text{ is } a \text{ priori} \text{ exchangeable across datasets if for every G-permutation } \sigma,$

$$p(\beta^1,\beta^2,\ldots,\beta^G) = p\big(\beta^{\sigma(1)},\beta^{\sigma(2)},\ldots,\beta^{\sigma(G)}\big).$$

- De Finetti: model β^{g} 's as conditionally *i.i.d.*
- Convenient choice: $\beta^g \sim N(\xi, \Gamma)$

(via empirical Bayes)

- Ubiquitous in software (lme4) and pedagogy [Bates et al., 2015] [Gelman, et al., 2013]

Limitations when D>>G

- Less intuitive (Cambridge, Boston & Dallas are not equally similar)
- $O(D^2)$ parameters [statistical & computational]
- Poor estimation accuracy

Choosing $p(\beta)$: Exchangeability Across Datasets vs. Covariates

Standard approach (Lindley and Smith, 1972)

- Assume exchangeability across datasets
- Model correlations in β across covariates Γ (D×D matrix)
- Specific choice: $\beta^g \sim N(\xi,\Gamma)$

Our approach [TFB2021]

- Assume exchangeability across *covariates*
- Model correlations in β across *datasets* $\sum \Sigma$ (G×G matrix)
- Specific choice: $\beta_d \sim N(\mu, \Sigma)$

Details to fill in to use the new model:

- Need practical algorithms: posterior inference, empirical Bayes
- Need theory & experiments: justify whether this is effective

Choosing $p(\beta)$: Correlations Across Datasets vs. Covariates

In high dimensions (D>G)

- **Standard approach** does worse than independent analyses.
 - lme4 does not run when D>G
- Exchangeable across covariates effectively shares information.

• Though conceptually similar, different dependence on dimension

Roadmap

- Background & Notation
 - Linear models
 - Bayesian inference
 - Modeling in high dimensions
- Our method: models correlations across datasets (rather than within datasets)
- Fast algorithms for inference in the new model
- Benefits of our method in high dimensions (theory and empirics)

Use empirical Bayes to estimate dataset relatedness $\widehat{\Sigma} = \underset{\Sigma}{\arg \max} p(Y^1, Y^2, ..., Y^G \mid \Sigma)$

• We develop an expectation maximization algorithm

Is this new method better in high dimensions?

Idea 3: Use theory! Under what conditions on β can we prove $R(\hat{\beta}_{ECov}, \beta)$ is small?

Challenge: $R(\hat{\beta}_{ECov}, \beta)$ is the integral of non-differentiable function of a matrix.

Is this new method better in high dimensions?

Theorem (Domination over Least Squares) [TFB2021]: If D > 2G + 2, and each X^g is well-conditioned, then for any β $R(\hat{\beta}_{\text{ECov}},\beta) < R(\hat{\beta}_{\text{LeastSquares}},\beta) < R(\hat{\beta}_{\text{EData}},\beta).$

- In high dimensions, $\hat{\beta}_{\mathsf{ECov}}$ does well
 - Better to capture correlations across datasets
- Our approach reduces risk <u>regardless of β </u>!
- Still unresolved: Risk improvement size? Boost from combining groups?
 - Consider $R(\hat{\beta}_{\text{ECov}}, \beta) R(\hat{\beta}_{\text{ECovIndep}}, \beta)$ [$\hat{\beta}_{\text{ECov}}$ on each dataset separately]

But... $R(\hat{\beta}_{ECov}, \beta)$ depends on non-central Wishart eigenvalues – Intractable! Make comparison tractable by reformulating problem:

- Consider asymptotics in # of covariates $(D \to \infty)$.
- Bayesian analysis: $\beta_d \sim N(0, \Sigma^*)$, consider $R_{\Sigma^*}(\hat{\beta}) := \mathbb{E}[R(\hat{\beta}, \beta)]$

Theorem (Asymptotic Gain of Joint Modeling) [TFB2021]: $\lim_{D \to \infty} \frac{R_{\Sigma^*}(\hat{\beta}_{\text{ECovIndep}}) - R_{\Sigma^*}(\hat{\beta}_{\text{ECov}})}{D} \ge \theta \frac{||diag(\Sigma^*)^{\downarrow} - \lambda(\Sigma^*)^{\downarrow}||_2^2}{(1 + ||\Sigma^*||_2)^3} \ge 0$

Distance between the eigenvalues vs. diagonals of Σ^* determines sharing.

Exch. Cov. Performance in Diverse Applications Challenge: in real data – can't check accuracy of effect estimation.

- We use prediction performance as a proxy for estimation
- We evaluate Mean Squared Error [MSE] with 5-fold cross validation

In diverse applications, exchangeability across covariates improves predictions.

Conclusions

Today: I showed modeling correlations across datasets performs better in high dimensions.

Primary Reference:

Trippe, Finucane, Broderick (2021) "For high-dimensional hierarchical models, consider exchangeability of effects across covariates instead of across datasets" In Neural Information Processing Systems