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Hierarchical Linear Modeling in High Dimensions

Example: How do differences in genetics impact Bipolar disorder?
Goal: Understand the many contributing factors = linear models
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Challenges:



Hierarchical Linear Modeling in High Dimensions

Example: How do differences in genetics impact Bipolar disorder?
Goal: Understand the many contributing factors = linear models

Control (Healthy)
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. Schizophrenia
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Cohorts

Challenges: Uncertainty, multiple groups of data = hierarchical Bayes

Depression
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This Talk: In high-dimensions (#Covariates > # Datasets)




Hierarchical Linear Modeling in High Dimensions
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This Talk: In high-dimensions (#Covariates > # Datasets)
1. Standard approach (e.g.1me4) fails (worse than non-hierarchical!)

2. Unconventional use of exchangeability is more intuitive & accurate
2



« Background & Notation
* Linear models

« Bayesian inference
« Modeling In high dimensions

« Our method: exchangeability of effects

across covariates (rather than within
Roadmap datasets)

« Fast algorithms for inference in the
new model

« Benefits of our method in high
dimensions (theory and empirics)




Background and Notation: Linear Modeling

Example in education: Relate student participation in free lunch
program to academic performance.

For each student n=1,2,...,N

“Eftect”
Change in \y
Performance =—> Yn — Xn ﬁ + En — Other Factgrs
(“Response”) / (“Residual”)

Participation J1 if in program
(“Covariate”) 0 otherwise

What if we have data from multiple schools?
(e.g. in Cambridge, Boston and Dallas)

Analysis Options:
1. Combine all data together -- ignores ditferences

2. Analyze independently -- worse performance if data limited
3. Partial pooling via hierarchical Bayesian modeling 4



Background and Notation: Bayesian Inference

Prior p(B|Y) xp(B) p(Y|B) Likelihood

* Subjective beliefs before
seeing data => probabilities

* (Codify assumptions about
dataset similarity

IBCambridge . IBBoston

Posterior

* Bayes Rule: update beliefs after seeing data
» Computational step (requires algorithms)

Empirical * Use data to automate choice of prior

Bayes « “Learn” extent of partial pooling, less subjective



Background and Notation: Multiple Covariates

What if we have multiple covariates for each student?
- E.g. playing a sport, past performance, demographics

- For each school g = 1,2, ...,G and each student n = 1,2, ..., N9

Effects G Datasets
A
g E g r 1
Y + E\n

. O

Response Covarlates Residual A
<

D = # Covariates (student attributes) ﬁz ﬁl .o ﬁ G &
G = # Datasets (schools) SZ{
N9 = # Samples in dataset g (students) 2

Question: What prior do we put on this matrix?



Choosing p(f): Exchangeability Across Datasets vs. Covariates

Standard approach (Lindley and Smith, 1972)

- Assume exchangeability across datasets G Daltasets

- Model correlations in ff across covariates -
[' (DXD matrix)

More formally: Assume “exchangeability”

f is a priori exchangeable across datasets if for

every G-permutation o, Bl e G

p(BL, B2, .., B%) = p(B°M, B7@, ..., B7@),

- De Finetti: model f9°s as conditionally 1.1.d.
- Convenient choice: 9 ~ N(§,T)

(via empirical Bayes) _

- Ubiquitous in software (1me4) and pedagogy
|Bates et al., 2015] |Gelman, et al., 2013]

Limitations when D>>G
- Less intuitive (Cambridge, Boston & Dallas are not equally similar)

- O(D?) parameters [statistical & computationall
- Poor estimation accuracy

s9jerIeAon) (J



Choosing p(f): Exchangeability Across Datasets vs. Covariates
Standard approach (Lindley and Smith, 1972)

- Assume exchangeability across datasets G Daltasets
- Model correlatiovri in § across covariates d L.
I' (DXD matri
( matrix) B,

- Specific choice: f9 ~ N(&,T)

O
— 8 ]| ¢
Our approach [TFB2021] .
- Assume exchangeability across covariates : g-
- Model Correlatgs in [ across datasets &
2 (GXG matrix
( ) — B —
- Specific choice: ;3 ~ N(u, X) - 1 —

Details to fill in to use the new model:
- Need practical algorithms: posterior inference, empirical Bayes
- Need theory & experiments: justify whether this is effective



Choosing p(f): Correlations Across Datasets vs. Covariates

In high dimensions (D>G)

 Standard approach does worse than
independent analyses.

* 1me4 does not run when D>G
Exchangeable across covariates
effectively shares information.
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 Though conceptually similar, different dependence on dimension



« Background & Notation
* Linear models
« Bayesian inference
« Modeling In high dimensions

« Our method: models correlations across
Roadmap datasets (rather than within datasets)




G Datasets

Inference under Exchangeability Across Covariate§ ,

Prior: Likelihood:

For each covariate d:  For dataset g and datapoint n:
Ba ~ N(O,%) Yy | B9 ~ N(X;B9,0%)

Posterior:

D =# Covariates
G =# Datasets Estimate [ as posterior mean:

Ne = # Samples in dataset g ,@ECOV = fﬁ p(B|Y)dp

|
sojerreAo))

h— —

Gaussian conjugacy = analytic form for Bgcov

3 ——A z / - 4 —1 - 5 \ =L o .

8 6E1]Cov Zl,lID uee El,GID XlTXl =R 0 XlTyl

O .

&= 2 . . :

3y S i Ky : : T : 5, : :

A Bgcov \ Yei1lp -+ Ygelp 0 ... XxXGTxG xGTyG

g L- : - ) ) [Bishop, 2006 — Chapter 3.3]

e Catch: High-dimensional linear system with G-D parameters
* We show: tractable via the conjugate gradient algorithm

Use empirical Bayes to estimate dataset relatedness
Y = argmax p(Y1,Y?% .., Y% | X
z

* We develop an expectation maximization algorithm 10



Is this new method better in high dimensions?

Estimation Procedure HE
P B M to ch 5 m'% Standard
1.Empirical Bayes (EM to choose X). 218 151972
2.Posterior Inference: Brcov = E[B|Y; 2] 3 10 - 31 g
=l
Simulation Set-Up é @:: i
1. Draw effects from prior: 3 ~ N(0, X) M !
2. Sample Y ~ p(Y|B), many times :
. 2
3. Estimate Ey o |24 2q(B8Y — BY 4 - | Our
Evip 129 2a(Ba —Fd) |, I Method™
“Risk”™: R(ﬁ,ﬁ) 101 102

o # of Covariates
How do we assess if this works more generally?

tdea—t—imHatetor—artortsH— Infinitely many [ — can’t try them all!
Idea 2: Use real data. We'll get there, but same problem.

Idea 3: Use theory! Under what conditions on f can we prove

R(,[?ECOV, ,B) is small?
Challenge: R(EECOV, ,B) is the integral of non-differentiable

function of a matrix. 11



Is this new method better in high dimensions?

Theorem (Domination over Least Squares) [TFB2021]:
If D> 2G + 2, and each XY is well-conditioned, then for any f

R(EECOV:E) < R(ELeastSquaresrﬁ) < R(BEData:ﬁ)-

* In high dimensions, Bgcqy does well
* Better to capture correlations across datasets

* Qur approach reduces risk regardless of f!

Still unresolved: Risk improvement size? Boost from combining groups?

- Consider R(,BAECOV' ,B) — R(,BAECOVInd‘epig) N

|Becov On each dataset separately|
But... R(EECOV, ,B) depends on non-central Wishart eigenvalues — Intractable!
Make comparison tractable by reformulating problem:

* Consider asymptotics in # of covariates (D — o).

» Bayesian analysis: g ~ N(0,Z*), consider Rs+(f): = E[R(B, )]

Theorem (Asymptotic Gain of Joint Modeling) [TFB2021]:

lim RZ*(IBAECOVIndep) - RZ*(BECOV) - A|diag(2*)l _ A(Z*)l”% Y
D —oo0 D o (1_|_ ”Z*”Z)B =

- Distance between the eigenvalues vs. diagonals of £* determines sharing.
12




Exch. Cov. Performance in Diverse Applications

Challenge: in real data — can’t check accuracy of effect
estimation.

- We use prediction performance as a proxy for estimation
- We evaluate Mean Squared Error |[MSE| with 5-fold cross validation

Community Level Blog Post Transfer Learning on
Law Enforcement Engagement  CIFARIO Classification
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N =~ 500 Communities N =~ 500 Blog posts N~ 100 Images

D =117 Demographic D = 279 Characteristics D =128 Dimensions of
Attributes of posts latent embedding

G = 4 Regions/Charges G = 3 Corpora G =8  Tasks

In diverse applications, exchangeability across covariates improves
predictions. 13



Conclusions

Today: I showed modeling
correlations across datasets performs
better in high dimensions.

Primary Reference:
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Trippe, Finucane, Broderick (2021) “For high-dimensional hierarchical models,
consider exchangeability of effects across covariates instead of across datasets” In

Neural Information Processing Systems

Contact me: blt2114Qcolumbia.edu
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