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Post-AlphaFold, protein design is
“guess & check”

- Natveguessing? ~20100 sequences!
- Native structures? Too sparse
- Existing ML tools? Low diversity,

high compute cost
Our Approach:

1. Learn model of structure, py(x),
from native proteins
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2. Sample scaffolds given motif:
e Partition x = [x;,, xq] Structures

Motif  Scaffold with motif
* Draw x¢ ~ p(xq | x3)

Key Tool: Diffusion generative models & sequential Monte Carlo
We show: Methods with potential to build long, diverse scaffolds
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Learning p,(x) [ProtDiff]

- Diffusion generative modeling background
- Adapting diffusion for protein backbones
- Model performance and limitations

Sampling x; ~ p (x| x,,) [SMCDIff]
- Why conditional sampling vs. “naive” in-painting?
- Sequential Monte Carlo for exact sampling in the
large-compute limit

Limitations, Related Work, and Future
directions



Diffusion models on protein backbones

Figures/slides borrowed from:
- CVPR 2022 Tutorial: Denoising Diffusion-based Generative Modeling: Foundations and Applications



State-of-the-art
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. 4 A . %, €
NI B ©
t‘:l by ®° . ‘—-‘

[Figure from CVPR tutorial]
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Denoising diffusion probabilistic models

General Idea
- Forward diffusion process gradually adds noise to input data.
- Reverse denoising process generates data by removing noise.

Forward diffusion process (fixed)

Data Noise

Reverse denoising process (generative)

[Figure from CVPR tutorial]



Denoising diffusion probabilistic models

Forward diffusion

Forward diffusion process (fixed)

Data

[Figure from CVPR tutorial]



Denoising diffusion probabilistic models

Forward diffusion

orward diffusion process (fixed)

Data

[Figure from CVPR tutorial]



Denoising diffusion probabilistic models

rward diffusion

Forward diffusion process (fixed)

Data

X¢|X¢—1) = Xt \/1 — BiX¢—1, 0l

« B how much noise is added on each step
« [Ho et al]: g,=0.0001, g, =02, B_, <,
 (1-p)is how much signal is kept.

[Figure from CVPR tutorial]



Denoising diffusion probabilistic models

Forward diffusion

Forward diffusion process (fixed)

Data

X |xi_1) = N(x¢; \/1 — Bixt_1.3:I) = q(X17|X0) = X¢|xX¢—1 (joint)

« B how much noise is added on each step
« [Ho et al]: g,=0.0001, g, =02, B_, <,
 (1-p)is how much signal is kept.

[Figure from CVPR tutorial]



Denoising diffusion probabilistic models

Forward diffusion

Forward diffusion process (fixed)

Data

q(x¢|xi—1) = N (x¢: \/1 — Bixt_1.3:I) = q(X17|X0) = q(x¢|x¢-1 (joint)
t=1
« B how much noise is added on each step
« [Ho et al]: g,=0.0001, g, =02, B_, <,
 (1-p)is how much signal is kept.

* Training requires sampling every x,

» But this is expensive for large 1 © g(x,|x,_;) - g(x,_{ | x,_5)...q(x; | xp)

[Figure from CVPR tutorial]
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Denoising diffusion probabilistic models

Marginal forward distribution

* Desirable during training to sample g(x,) for any ¢ in O(1) instead of O(T)

Forward diffusion process (fixed)

Data Noise
Define oy = | | (1 —fBs) =  q(x¢|xg) = N(x¢; Varxg, (1 —ag)I),  (Diffusion Kernel)
8:]. H—J W—J
Remaining Injected
signal noise

a(xt) = [ q(xo.x¢)dxo = [ q(x0) q(x¢|x0)dx)  For sampling: x; = /ay x9+ /(1 — &) ¢  where ¢ ~ N(0,1)

\ ) N\ ~ J \ J g ~ J
Diffused Joint Input Diffusion
data dist. dist. data dist. kernel

[Figure from CVPR tutorial]
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Denoising diffusion probabilistic models

Reverse denoising process

Forward diffusion process (fixed)

Data

p(x7) =N(x7:0,1
Goal: py(xi—1|xt) = q(x¢|x;-1

| )
po(Xt—1|xt) = N(x¢—1; pg(x¢, 1), 0

-

N

Trainable network _ |
[Figure from CVPR tutorial]



Denoising diffusion probabilistic models

everse denoising process

Forward diffusion process (fixed)

Data Noise
T
plxr) = Nixr: 0.1 = po(xo1) = p(x7) | | PA(x—1]3¢
Goal: pp(xt—1|x¢t) = q(xy|x¢_1 t=1
9 First sample from x, and
po(x¢t—1]xt) = N(x¢—1; 6‘9 Xt,tja ol go backwards to x,

N

Trainable network _ |
[Figure from CVPR tutorial]



Denoising diffusion probabilistic models

everse denoising process

Forward diffusion process (fixed)

Data Noise
r T
P\XT) = x7; 0, =  po(x07) = p(XT Hpg Xt—l‘xt Sampling is O(T)
Goal: < |X - P T € [100, 1000] depending on problem.
Oal. Po(Xt—11Xt) ~ ( xfle—l - Active area of research to speed up
First sample from x, and sampling.
= N (x¢—1; t), o7 1 '

po(Xt—1]xt) = N (x¢—1; pg(x¢, 1), 0 go backwards to x,

. J

N

Trainable network _ _
[Figure from CVPR tutorial
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Forward diffusion process (fixed)

Data
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Denoising diffusion probabilistic models

Optimization

Forward diffusion process (fixed)

Data

. . | )
earning reverse transition: pg(X¢—1[x¢) = N (x¢—1; pg(x¢, 1), 0

ecall xt:\/éztx(ﬁ—\/l—ézt €

[Figure from CVPR tutorial]



Denoising diffusion probabilistic models

Optimization

Forward diffusion process (fixed)

Data Noise
: " 2
Learning reverse transition: pg(X¢—1|Xt) = N (x¢—1; pg(x¢,t), 071
Recall xy = +vay xg+ \/ Il —ay) €
1 /
Related to x:  po(xs, 1) = X — €9(X¢,
1 — / 1 — ¢

[Figure from CVPR tutorial]



Denoising diffusion probabilistic models

Optimization

Forward diffusion process (fixed)

Data

Learning reverse transition: 2y Xi—1|X¢t) = N (xp—1; pp(X¢, t ,U%I B..epa.ra..m_.e.l:.er.i__z.agign_ from [Ho et al]:
L=Ellle—el?l, e~ H(0,1)

Recall xy = +vay xg+ \/ Il —ay) €

1 !

Related to x:  po(xs, 1) = X — €9(X¢,
1 — / 1 — ¢
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Denoising diffusion probabilistic models

Optimization

Forward diffusion process (fixed)

Data

Learning reverse transition: pg(X¢—1[xt) = N(x¢—1; pg(x¢, 1), 071 B..epa.ra_.m__e.l:.em_.z.a%lgn_ from [Ho et al]:
L=Ellle—el?l, e~ H(0,1)

Recall xy = +vay xg+ \/ Il —ay) €

1 . - .
Related to xy: ol t) = — X, L ep(xy. t Noise prediction model: €y(x,, )

— Pt 1 — oy

[Figure from CVPR tutorial



Denoising diffusion probabilistic models

Intuition

No encoder (replaced with forward diffusion) only need to train decoder (compared to VAES).
Decoder is easy to train (compared to GANs) with simple loss that are easy to learn/predict.

Forward diffusion process (fixed)

[Figure from CVPR tutorial]



ProtDiff: diffusion on protein backbones

Benefits of diffusion on proteins

-~ Model directly in 3D space instead of distograms.
- Shown state-of-the-art success in generating small molecules [Hoogeboom et al.] and point clouds [Luo et al.]

Forward diffusion process (fixed)

[Figure from CVPR tutorial]
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Model detalls

Same protein

- Input:
- x, € RV : zero-centered 3D backbone point clouds.

- Treats protein as a fully connected graph.
- [sy,...,8y] Where 5. is sequence position index of residue i
- Breaks permutation invariance.

-te|l,...,T]

Sampling

- E(3) Equivariant diffusion model:
- Goal: p(xy) = p(Rxy), R € SO(3)

- Starting from invariant distribution with a equivariant noise
prediction model leads to equivariant samples. [GeoDiff Xu et
al. ]

- Distribution is invariant to E(3) but samples are equivariant.

- Neural network:
- E(3) equivariant graph neural network (EGNN)
[Satorras et al. ]
- Property that Euclidean transforms equally affect output.

R €,)(x) = €¢x(Rx) — equivariant noise prediction




Designability criterion

Self-consistency evaluation

- A 3D structure is designable if a protein riad &
sequence can be found that folds into the Sampled °:;-§§§;°J
same 3D structure. Backbone ‘&g

- Use sequence design to search for likely
sequences for a backbone.

- - - Generated DIV EYHIDOMGKMFDYT

- Use structure prediction (folding) to Sequence

verify backbone samples can be designed

from a protein sequence.
- >0.5 TM-score indicates roughly same bl el

structure.

Predicted
Structure




- Sequence design: ProteinMPNN
- State-of-the-art fixed backbone
sequence design method.

Only Ca distances

@-o-? +

- Structure prediction: AlphaFold2
- No MSA. No template. Allows for fast
inference. Only include query sequence.

Input sequence

- Use released CASP14 weights.

y,
<

ST / ProteinMPNN \
‘/( W
&3 « / \ / \
3 ‘\) ) Uf Backbone Encoder Sequence Decoder
«~ J‘ "
) |
Update |
_____________ edges Update - Probabilities
(. nodes A I
Sl I I Iterative
P A A .
““““ : 3X_ Update A ! Random 2 decoding
- nodes 3x ! decoding :
________________ : order v Sample
Input: protein} i Ca C.O Nodes <! Nodes <€ Sequence
backbone Cb distances > Edges > Edges A
coordinates 1
\ \ Output: protein
/ Zeros \\ \ sequence
Cortrecs S
] Single repr. (r.c —>
_.t%
Evoformer Sr:‘rggﬂ;e
(48 blocks) (8 blocks)
o I n I I o I o I I
. - Pair 1 Pair
G)—pz_:repressntation —_— —» | representation| —
'y ‘ frr.c) frr.c)
- -+
. / . J

A Chain A

Chain B

Self-consistency components

| |

[Dauparas et al]

High
confidence

3D structure

« Recycling (three times)

|

[Jumper et al]



Characterization of self-consistency

Backbone design  AF2 prediction PDB parent

scT™ > 0.9
Length 125 scTM=0.91 PDB ID=1f9i, TMscore=0.98
scT™ ~ 0.5
Length 69 scTM=0.5 PDB ID=7c78, TMscore=0.65
scT™™ <0.25 None found

A

Length 120 scTM=0.24
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- Trained with around 4K short (<128 residue) proteins from PDB

ProtDiff — Ca backbone ProteinMPNN Sequence—| AlphaFold2 i—

Full sampling pipeline:

Unconditional sampling

Compare the end structures through alignment (scTM)

— Short (50-70 aa)

Long (71-128 aa)

(@)

Normalized counts
N

N

il

—_ I

0.4

0.6 0.8
Highest scTM

——

“designable”

1.0

Highest TMscore to training set

Has left-handed helix
No left-handed helix

e
(=)

O
o

©
o

O
I

0.4

0.6
Highest scTM

0.8

1.0

All-atom
structure



Unconditional sampling

- Trained with around 4K short (<128 residue) proteins from PDB

Full sampling pipeline: |ProtDiff — Ca backbone ProteinMPNN Sequence—| AlphaFold2 |—> 272"

Compare the end structures through alignment (scTM)

- Short (50-70 aa) x  Has left-handed helix
——— Long (71-128 aa) " e No left-handed helix
L
v
o 1:0°
i £
! c
% > o : S 0.8+
8 | o
b :
84 ; 2
S B e B -
prd 2 ) | -
i %04
ol Hbee | 57| e
0.2 0.4 0.6 0.8 1.0 T 0.2 0.4 0.6 0.8 1.0
Highest scTM Highest scTM
——

“designable”



Specific failure mode

- The model can generate left-handed helices (in red)




Sample interpolations

- Noise interpolated samples

For samples with noise €%*!) and é“Pwe interpolate with noise set to \/EG(O:T) +4/1 — ae®D
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- Noise interpolated samples

For samples with noise €%*!) and é“Pwe interpolate with noise set to \/EG(O:T) +4/1 — ae®D



Sampling x; ~ p (x| x,,) [SMCDIff]
- Why conditional sampling vs. “naive” in-painting?
- Sequential Monte Carlo for exact sampling in the
large-compute limit



Inpainting with Diffusion Models
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Inpainting with Diffusion Models

» Artifacts & edge effects
in state-of-art inpainting
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Inpainting with Diffusion Models

» Artifacts & edge effects
in state-of-art inpainting
>

gi
&

"A girl hugging a corgi on a pedestal”

» For protein design, small errors break designability

» Why does this work at all?

Hypothesis: Inpainting approximates conditional sampling.
Approximation error —> artifacts.

Nichol et al. “GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Ditfusion Models™ (2022)
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- Partition structure as x = [x,,, xg]
Motif, ,.

Structure space

R caffold

Our rationale: Assume
1.p,(x) >0 only if x is designable, and
!'_Ic—:s 2. py(x) > 0, for motif of interest x¥.
=
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otructure space - Partition structure as x = [x;;, X

Po(xg | X3) :
S Motif, .
D(X1/) _ Scaffold
Add Our rationale: Assume

1.p,(x) >0 only if x is designable, and
= 2. po(x) > 0, for motif of interest x*.
§ Then for any x¢ ~ py(xq | X, x =[x, xg] 1S

designable!
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Structure space

- Partition structure as x = [x,,, xg]

Po(xg | X3) :
S Motif, .
D(X1/) _ Scaffold
Add Our rationale: Assume

1.p,(x) >0 only if x is designable, and
= 2. po(x) > 0, for motif of interest x*.
§ Then for any x¢ ~ py(xq | X, x =[x, xg] 1S

designable!
A&
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Structure space
Po(Xs | xj})

- Partition structure as x = [x,,, xg]
Motif, ,.

_ ‘Scaffold
Our rationale: Assume
1.p,(x) >0 only if x is designable, and

2. pyx¥) > 0, for motif of interest Xy

Then for any xg ~ py(xg | x*), x = [x¥*, x] IS
designable!

Po(Xy1)

Result: With a good enough p,(x),
motif-scaffolding <> conditional sampling

— ;.
Structures with motit §ecaffold



Structure space
Po(Xs | xj})

- Partition structure as x = [x,,, xg]
Motif, ,.

_ ‘Scaffold
Our rationale: Assume
1.p,(x) >0 only if x is designable, and

2. pyx¥) > 0, for motif of interest Xy

Then for any xg ~ py(xg | x*), x = [x¥*, x] IS
designable!

Po(Xy1)

Result: With a good enough p,(x),
motif-scaffolding <> conditional sampling

Challenge: How to sample xg ~ py(xg | x7)

— ;.
Structures with motit §ecaffold



Inpainting with Diffusion Models

Unconditional Sampling:
¥ D ~ p(x® | x D)

Motif: X,
(T) D, 0, (0)
p— xM ceoe lxM ‘lxM i ceoe x%) —
(T D" ()
X ' X X [ X
> ISy S Scaffold: x;

Q_&/‘~¢



Inpainting with Diffusion Models

Unconditional Sampling: Conditional Sampling:
@~ pyx® [ x D) 1 ~ pox® |0, xO)

e Exact but intractable!

Motif: X,
+(0)
— ceooe ,".“ '-~‘ cooe M —
+(T) D S0 +(0)
5 w9 “ 9! 5 Scaffold: xg
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Inpainting with Diffusion Models

Unconditional Sampling: Conditional Sampling:
1@ ~ py(x® | x D) 1~ py(x® | x{+D, xO0)

e Exact but intractable!

- Tractable alternative: Replacement approach [Song 2021, Meng 2021 ]

forward motif diffusion Motif: X,
4—
(T) (r+1), () (0)
- X% xy ) x% x%) =
[+ [ D Cq ¢
Xg Xg o s s " Scaffold: x;
—_—

reverse replacement sampling

Y, Npg(x(t) |x(t 1),x]g[ 1)) With xj& 1 Q(X]g[ 1) | x]%)




Inpainting with Diffusion Models

Unconditional Sampling: Conditional Sampling:
1@ ~ py(x® | x D) 1~ py(x® | x{+D, xO0)

e Exact but intractable!

- Tractable alternative: Replacement approach [Song 2021, Meng 2021 ]

forward motif diffusion Motif: X,
4—
(T) (r+1), () (0)
- X% xy ) x% x%) =
[+ [ D Cq ¢
Xg Xg o s s " Scaffold: x;
—_—

reverse replacement sampling

1 DY\ 1 1
X~ PP [ 1D, D) with x D ~ g (D | xp)

- Introduces approximation error and leads to chain breaks!



Improved inpainting with SMCDiff
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Improved inpainting with SMCDiff

Replacement Method: Conditional Sampling:
O o (x® | LE+D L (+D) _ 5 _ (1) | (t+1) .(0)
xg 53(1);5 B2 (t+1,)XM (())), Is there something Xg" ~ PeXg” | X, x,7)
with x, ™7 ~ g, ™ | x,7) in-between?  Exact but intractable!

* |nexact but tractable
Our proposal — Look ahead by a few steps:

1 —1:i+1 | —1:i+1 —1:i+1
X~ pp(x? | xED, xEED) Swith xUTEFD ~ g (e D | x()

e Tractable with a sequential Monte Carlo (SMC) algorithm

pg(xg) | x§t+1),x]$;—1:t+1)) Ocpe(x(t),x]g—lzt) | xé”l),x]g“)) (Bayes' rule)
X Pe(xg) | Xét_l),xﬂ_l))l?e(xﬁ_l) | x(”,xjf?) (Markov structure)
Hf_/w_/

can sample can compute
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M M M M M
— (T) .o (14+1) (1) t—=1) ... ,(0) = \f'.
A5 k Yok sk Kk A5k

—_—
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- Reverse diffuse K weighted scaffold “particles”
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- Forward diffuse motif:

— (T)
Xy
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Improved inpainting with SMCDiff

- Forward diffuse motif:

— (1)
M
— (1) 1), % @ v, (t=1) ...
Sk Yok WSk Pk S k

«,°
—_—

- Reverse diffuse K weighted scaffold “particles”
1. scaffolds: xgl)c ~ py(x” \xS(ijl),xﬁ“)) fork=1,...,K

K

2. Re-weight by looking ahead: w, = py(x;; ™" 17, x), W, = wk/Zwk
k'=1

3. Resample according to weight: {x{"};_, ~ Multinomial({x{" }, {W,},K)

Proposition (informal): /f p,(x”) = g(x'), then x") 4 g(x” | ).
K= 00



Motif self-consistency

Self-consistency evaluation

Sampled
Backbone

- Similar evaluation as before.

Sequence Design

- Also calculate Motif RMSD
- Achieving motif RMSD < 1.0A is imperative Generated MFAELKAKF

in motif-scaffolding. Sequence F| EIGORDAARMALRE

- Criterion for successful scaffolding:
- motif RMSD < 1.0A
- scT™ > 0.5

Structure Prediction

Predicted
Structure
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Evaluation Setup
e Pick motifs from structures in PDB
e Know at least one solution exists

S5trv bexz

Base Motif Length 21 res. 20 res.
Length 118 res. /2 res.
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Evaluation Setup
e Pick motifs from structures in PDB
e Know at least one solution exists

We test dependence scaffold length
 Provide variable length “pads” of native scaffold
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Motif-scaffolding case-studies

Evaluation Setup
e Pick motifs from structures in PDB
e Know at least one solution exists

We test dependence scaffold length
 Provide variable length “pads” of native scaffold

 On 5trv, SMCDiff builds diverse scaffolds up to
80 residues Strv bexz
| | o | | Base Motif Length 21 res. 20 res.
Strv
8 - ! Sampling method
_ ¢ m fixed
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s - . T A B replacement
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Motif-scaffolding case-studies

Evaluation Setup
e Pick motifs from structures in PDB
e Know at least one solution exists

We test dependence scaffold length
 Provide variable length “pads” of native scaffold

 On 5trv, SMCDiff builds diverse scaffolds up to
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 "Naive” inpainting fails beyond 50 residues Length 118 res. 75 res.
Strv
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Motif-scaffolding case-studies

Evaluation Setup
e Pick motifs from structures in PDB
e Know at least one solution exists

We test dependence scaffold length

 Provide variable length “pads” of native scaffold
 On 5trv, SMCDiff builds diverse scaffolds up to

80 residues otrv 6exz
_ _ o _ _ Base Motit Length 21 res. 20 res.
 "Naive” inpainting fails beyond 50 residues Length 118 res. 75 res.
S5trv 6exz
8 - ! 1 Sampling method
— ' mm fixed
<6 | W SMCDIff (Ours)
() - . T - B replacement s . -
%’ $ | ‘o $ '
o 4 ‘ i
22 |}
“a{.;' ¥TITTTT
D P DO O D P PR S

AT T A P ASMEIPX AR SRS N
Scaffold Size (# residues) Scaffold Size (# residues)



Faillure case: RSV

Respiratory syncytial virus (RSV) neutralizing antibody binds site II and V.

- RSV known to be difficult to scaffold. Only recently
[Wang+2022] successfully scaffolded Site V.

Native motif A\ &
Binding target LR
a— L | ; )
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o |
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- SMCDiff fails to scaffold RSV.

Sitell SiteV

|Figure adapted from Wang+ 2022]
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Related work on motif-scaffolding & generative modeling

Non-generative motif-scaffolding is "state of the art”, but has limitations:
e Hallucination: search over on sequence input to AlphaFold
- Susceptible to adversarial examples
- Compute cost of hours to days with variable success rates

Hallucination [Anishchenko+, 2021; Wang+, 2022]
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Non-generative motif-scaffolding is "state of the art”, but has limitations:
e Hallucination: search over on sequence input to AlphaFold
- Susceptible to adversarial examples
- Compute cost of hours to days with variable success rates

e RosettaFold "Missing information recovery” [Wang+, 2022]: Supervised
retraining

Hallucination [Anishchenko+, 2021; Wang+, 2022]
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Related work on motif-scaffolding & generative modeling

Non-generative motif-scaffolding is "state of the art”, but has limitations:
e Hallucination: search over on sequence input to AlphaFold
- Susceptible to adversarial examples
- Compute cost of hours to days with variable success rates

e RosettaFold "Missing information recovery” [Wang+, 2022]: Supervised
retraining

- Limited diversity, low performance for >40 residue scaffolds

Hallucination [Anishchenko+, 2021; Wang+, 2022]

Predicted Final
Structure Design
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Related work on motif-scaffolding & generative modeling

Generative models have made recent strides:
 Modeling distance matrices as images [Lin+2021, Anand+2017, Lee+2022]
- Rely on non-differentiable “folding” as second step
 Concurrent work on diffusion in 3D [Anand+2022, Luo+2022]
- No demonstrations of “unconditional” sampling

Anand+2022 Luo+2022
Training Rm Antigen
! oK Y —
J;(: L?g“{ﬂsvucture at | -- : Structure o CDR
... HHHHHHHHLLLLLLEEEEEELLLL... %);gﬁ ﬂ), T=t | it -8 DeSignS
£ Ry 2
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>~ VY E | Bt
| Structure Module Predict structure at Q)
- i RGLDPLYCNNSTTCYRV
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Related work on motif-scaffolding & generative modeling

ProtDiff + SMCDiff Advantages:

 Unconditional sampling of diverse backbones
 Generative framework allows efficient sampling of diverse scaffolds

e Can scaffold up to 80 residues

ProtDiff Limitations:

 Doesn’t yet extend beyond motifs in train set
 Requires pre-specifying scaffold length and motif placement



Diffusion models enable a probabilistic approach to scaffolding motifs
- ProtDiff, captures a distribution over diverse native backbones

- SMCDIiff, provides accurate conditional samples, and outperforms naive
inpainting on scaffolding problems



Conclusions

Diffusion models enable a probabilistic approach to scaffolding motifs
- ProtDiff, captures a distribution over diverse native backbones

- SMCDIiff, provides accurate conditional samples, and outperforms naive
inpainting on scaffolding problems
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