Diffusion modeling of protein backbones for the motif-scaffolding problem Brian Trippe & Jason Yim

Computational Protein Design Workflow

[Figure credit: Doug Tischer & David Juergens]

Computational Protein Design Workflow

Motifs can have various functions and sources

[Figure credit: Doug Tischer & David Juergens]

Protein interaction interfaces (via fragment docking)

Catalytic & metalbinding sites (quantum chemistry)

Epitope presentation (Native interface)

Computational Protein Design Workflow

Motifs can have various functions and sources

[Figure credit: Doug Tischer & David Juergens]

Protein interaction interfaces (via fragment docking)

This talk

Catalytic & metalbinding sites (quantum chemistry)

Epitope presentation (Native interface)

Post-AlphaFold, protein design is "guess & check"

Post-AlphaFold, protein design is "guess & check"

- Naive guessing?

Post-AlphaFold, protein design is "guess & check"

- Naive guessing? ~20¹⁰⁰ sequences!

Post-AlphaFold, protein design is "guess & check"

- Naive guessing? ~20¹⁰⁰ sequences!
- Native structures?

Post-AlphaFold, protein design is "guess & check"

- Naive guessing? ~20¹⁰⁰ sequences!
- Native structures? Too sparse

Structures with motif

Post-AlphaFold, protein design is "guess & check"

- Naive guessing? ~20¹⁰⁰ sequences!
- Native structures? Too sparse
- Existing ML tools?

Structures with motif

Post-AlphaFold, protein design is "guess & check"

- Naive guessing? ~20¹⁰⁰ sequences!
- Native structures? Too sparse
- Existing ML tools? Low diversity, high compute cost

Structures with motif

Post-AlphaFold, protein design is "guess & check"

- Naive guessing? ~20¹⁰⁰ sequences!
- Native structures? Too sparse
- Existing ML tools? Low diversity, high compute cost

Structures

All Structures (x)

with motif

Post-AlphaFold, protein design is "guess & check"

- Naive guessing? ~20¹⁰⁰ sequences!
- Native structures? Too sparse
- Existing ML tools? Low diversity, high compute cost

Our Approach:

1. Learn model of structure, $p_{\theta}(x)$, from native proteins

> Structures with motif

Post-AlphaFold, protein design is "guess & check"

- Naive guessing? ~20¹⁰⁰ sequences!
- Native structures? Too sparse
- Existing ML tools? Low diversity, high compute cost

Our Approach:

1. Learn model of structure, $p_{\theta}(x)$, from native proteins

- 2. Sample scaffolds given motif:
- Partition $x = [x_M, x_S]$ Scaffold Motif

Structures with motif

• Draw $x_S \sim p_{\theta}(x_S \mid x_M)$

Post-AlphaFold, protein design is "guess & check"

- Naive guessing? ~20¹⁰⁰ sequences!
- Native structures? Too sparse
- Existing ML tools? Low diversity, high compute cost

Our Approach:

1. Learn model of structure, $p_{\theta}(x)$, from native proteins

- 2. Sample scaffolds given motif:
- Partition $x = [x_M, x_S]$ Scaffold Motif
- Draw $x_S \sim p_{\theta}(x_S \mid x_M)$

Key Tool: Diffusion generative models & sequential Monte Carlo

Post-AlphaFold, protein design is "guess & check"

- Naive guessing? ~20¹⁰⁰ sequences!
- Native structures? Too sparse
- Existing ML tools? Low diversity, high compute cost

Our Approach:

1. Learn model of structure, $p_{\theta}(x)$, from native proteins

- 2. Sample scaffolds given motif:
- Partition $x = [x_M, x_S]$ Scaffold Motif
- Draw $x_S \sim p_{\theta}(x_S \mid x_M)$

Key Tool: Diffusion generative models & sequential Monte Carlo We show: Methods with potential to build long, diverse scaffolds

Roadmap

Learning $p_{\theta}(x)$ [**ProtDiff**]

Roadmap

- Diffusion generative modeling background - Adapting diffusion for protein backbones - Model performance and limitations

Learning $p_{\theta}(x)$ [**ProtDiff**]

Sampling $x_S \sim p_{\theta}(x_S \mid x_M)$ [SMCDiff]

Roadmap

- Diffusion generative modeling background - Adapting diffusion for protein backbones - Model performance and limitations

- Why conditional sampling vs. "naive" in-painting? - Sequential Monte Carlo for exact sampling in the large-compute limit

Learning $p_{\theta}(x)$ [**ProtDiff**]

Sampling $x_S \sim p_{\theta}(x_S \mid x_M)$ [SMCDiff]

Limitations, Related Work, and Future directions

Roadmap

- Diffusion generative modeling background - Adapting diffusion for protein backbones - Model performance and limitations

- Why conditional sampling vs. "naive" in-painting? - Sequential Monte Carlo for exact sampling in the large-compute limit

Diffusion models on protein backbones

Figures/slides borrowed from:

CVPR 2022 Tutorial: Denoising Diffusion-based Generative Modeling: Foundations and Applications

State-of-the-art

DALL·E 2

"a propaganda poster depicting a cat dressed as french emperor napoleon holding a piece of cheese"

IMAGEN

"A photo of a raccoon wearing an astronaut helmet, looking out of the window at night."

General idea

Noise

General idea

Forward diffusion process gradually adds noise to input data.

Forward diffusion process (fixed)

Data

Noise

General idea

- Forward diffusion process gradually adds noise to input data.
- Reverse denoising process generates data by removing noise.

Data

Reverse denoising process (generative)

Forward diffusion process (fixed)

[Figure from CVPR tutorial]

Noise

Forward diffusion

Data

Forward diffusion process (fixed)

Noise

Forward diffusion

Forward diffusion process (fixed)

Data

Noise

Forward diffusion

Forward diffusion process (fixed)

$$q(\mathbf{x}_t | \mathbf{x}_{t-1}) = \mathcal{N}(\mathbf{x}_t; \sqrt{1 - \beta_t} \mathbf{x}_{t-1}, \beta_t \mathbf{I})$$

- β_t how much noise is added on each step •
- [Ho et al]: $\beta_0 = 0.0001$, $\beta_T = 0.2$, $\beta_{t-1} < \beta_t$
- $(1 \beta_t)$ is how much signal is kept.

Noise

Forward diffusion

Forward diffusion process (fixed)

$$q(\mathbf{x}_t | \mathbf{x}_{t-1}) = \mathcal{N}(\mathbf{x}_t; \sqrt{1 - \beta_t} \mathbf{x}_{t-1}, \beta_t \mathbf{I}) \quad \Longrightarrow \quad q(\mathbf{x}_t | \mathbf{x}_{t-1}) \quad \mathbf{x}_t \in \mathcal{N}(\mathbf{x}_t; \mathbf{x}_t - \beta_t \mathbf{x}_{t-1}, \beta_t \mathbf{I}) \quad \mathbf{x}_t \in \mathcal{N}(\mathbf{x}_t; \mathbf{x}_t - \beta_t \mathbf{x}_{t-1}, \beta_t \mathbf{I})$$

- β_t how much noise is added on each step •
- [Ho et al]: $\beta_0 = 0.0001$, $\beta_T = 0.2$, $\beta_{t-1} < \beta_t$
- $(1 \beta_t)$ is how much signal is kept.

Noise

Forward diffusion

Forward diffusion process (fixed)

 \bullet

$$q(\mathbf{x}_t | \mathbf{x}_{t-1}) = \mathcal{N}(\mathbf{x}_t; \sqrt{1 - \beta_t} \mathbf{x}_{t-1}, \beta_t \mathbf{I}) \quad \Longrightarrow \quad \mathbf{A}_t$$

- β_t how much noise is added on each step \bullet
- [Ho et al]: $\beta_0 = 0.0001$, $\beta_T = 0.2$, $\beta_{t-1} < \beta_t$
- $(1 \beta_t)$ is how much signal is kept.

Noise

Training requires sampling every x_t

But this is expensive for large t: $q(x_t | x_{t-1}) \cdot q(x_{t-1} | x_{t-2}) \dots q(x_1 | x_0)$

Marginal forward distribution

• Desirable during training to sample $q(x_t)$ for any t in O(1) instead of O(T)

Data

Forward diffusion process (fixed)

Noise

Marginal forward distribution

• Desirable during training to sample $q(x_t)$ for any t in O(1) instead of O(T)

Data

Forward diffusion process (fixed)

Noise

Marginal forward distribution

Data

• Desirable during training to sample $q(x_t)$ for any t in O(1) instead of O(T)

Forward diffusion process (fixed)

Marginal forward distribution

• Desirable during training to sample $q(x_t)$ for any t in O(1) instead of O(T)

Diffused data dist.

dist.

data dist.

kernel

Forward diffusion process (fixed)

Reverse denoising process

Data

Forward diffusion process (fixed)

Noise

Reverse denoising process

 $p(\mathbf{x}_T) = \mathcal{N}(\mathbf{x}_T; \mathbf{0}, \mathbf{I})$

Forward diffusion process (fixed)

Noise

Reverse denoising process

Trainable network

Forward diffusion process (fixed)

Noise

Reverse denoising process

Forward diffusion process (fixed)

Noise

Reverse denoising process

Forward diffusion process (fixed)

 $T \in [100, 1000]$ depending on problem. Active area of research to speed up

Optimization

Data

Forward diffusion process (fixed)

Noise

Optimization

Forward diffusion process (fixed)

Learning reverse transition: $p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t) = \mathcal{N}(\mathbf{x}_{t-1}; \mu_{\theta}(\mathbf{x}_t, t), \sigma_t^2 \mathbf{I})$

Noise

Optimization

Forward diffusion process (fixed)

Noise

Optimization

Forward diffusion process (fixed)

Noise

$$_{ heta}(\mathbf{x}_t,t)
ight)$$

Optimization

Forward diffusion process (fixed)

Reparameterization from [Ho et al]: $L = \mathbb{E}[\|\epsilon - \epsilon_{\theta}\|^2], \quad \epsilon \sim \mathcal{N}(0,1)$

Optimization

Forward diffusion process (fixed)

Reparameterization from [Ho et al]: $L = \mathbb{E}[\|\epsilon - \epsilon_{\theta}\|^2], \quad \epsilon \sim \mathcal{N}(0,1)$

Noise prediction model: $\epsilon_{\theta}(x_t, t)$

Intuition

- No encoder (replaced with forward diffusion) only need to train decoder (compared to VAEs).
- Decoder is easy to train (compared to GANs) with simple loss that are easy to learn/predict.

ProtDiff: diffusion on protein backbones

Benefits of diffusion on proteins

- Model directly in 3D space instead of distograms.
- ►

Shown state-of-the-art success in generating small molecules [Hoogeboom et al.] and point clouds [Luo et al.]

ProtDiff: diffusion on protein backbones

random Gaussian point cloud

 X_T

. . .

3D C α coordinates of a protein

Future works:

 X_0

- Incorporate SE(3) rigid bodies.
- Incorporate sequence.

ProtDiff: diffusion on protein backbones

random Gaussian point cloud

 X_T

. . .

3D C α coordinates of a protein

Future works:

 X_0

- Incorporate SE(3) rigid bodies.
- Incorporate sequence.

Model details

• Input:

- $x_t \in \mathbb{R}^{N \times 3}$: zero-centered 3D backbone point clouds.

- Treats protein as a fully connected graph.
- $[s_1, ..., s_N]$ where s_i is sequence position index of residue *i*
 - Breaks permutation invariance.
- *t* ∈ [1,...,T]

Model details

• Input:

- $x_t \in \mathbb{R}^{N \times 3}$: zero-centered 3D backbone point clouds.
 - Treats protein as a fully connected graph.
- $[s_1, ..., s_N]$ where s_i is sequence position index of residue i
 - Breaks permutation invariance.
- **-** *t* ∈ [1,...,*T*]

• E(3) Equivariant diffusion model:

- Goal: $p(x_0) = p(Rx_0), R \in SO(3)$
- Starting from *invariant* distribution with a *equivariant* noise prediction model leads to *equivariant* samples. [GeoDiff Xu et al.]
- Distribution is invariant to E(3) but samples are equivariant.

Model details

• Input:

- $x_t \in \mathbb{R}^{N \times 3}$: zero-centered 3D backbone point clouds.
 - Treats protein as a fully connected graph.
- $[s_1, ..., s_N]$ where s_i is sequence position index of residue *i*
 - Breaks permutation invariance.
- **-** *t* ∈ [1,...,*T*]

• E(3) Equivariant diffusion model:

- Goal: $p(x_0) = p(Rx_0), R \in SO(3)$
- Starting from *invariant* distribution with a *equivariant* noise prediction model leads to *equivariant* samples. [GeoDiff Xu et al.]
- Distribution is invariant to E(3) but samples are equivariant.

Neural network:

- E(3) equivariant graph neural network (EGNN) [Satorras et al.]
- Property that Euclidean transforms equally affect output. $R \ \epsilon_{\theta}(x) = \epsilon_{\theta}(Rx) \rightarrow \text{equivariant noise prediction}$

- A 3D structure is **designable** if a protein sequence can be found that folds into the same 3D structure.
- Use sequence design to search for likely sequences for a backbone.
- Use structure prediction (folding) to verify backbone samples can be designed from a protein sequence.
 - >0.5 TM-score indicates roughly same structure.

- Sequence design: ProteinMPNN
 - State-of-the-art fixed backbone sequence design method.

Only Ca distances

- Structure prediction: AlphaFold2
 - No MSA. No template. Allows for fast inference. Only include query sequence.

ŵ**⁼††**††† Input sequence

- Use released CASP14 weights.

Self-consistency components

[Jumper et al]

Characterization of self-consistency

Backbone design AF2 prediction

Length 125

sctm ~ 0.5

scTM > 0.9

Length 69

scTM < 0.25

Length 120

PDB parent

scTM=0.91

PDB ID=1f9i, TMscore=0.98

scTM=0.5

PDB ID=7c78, TMscore=0.65

None found

scTM=0.24

Trained with around 4K short (<128 residue) proteins from PDB

- Trained with around 4K short (<128 residue) proteins from PDB
- Full sampling pipeline:

- Trained with around 4K short (<128 residue) proteins from PDB
- Full sampling pipeline:

Compare the end structures through alignment (scTM) ►

- Trained with around 4K short (<128 residue) proteins from PDB
- Full sampling pipeline:

ProtDiff

Compare the end structures through alignment (scTM)

- Trained with around 4K short (<128 residue) proteins from PDB
- Full sampling pipeline:

ProtDiff

Compare the end structures through alignment (scTM)

The model can generate left-handed helices (in red)

Chain breaks can occur

Specific failure mode

Noise interpolated samples

Sample interpolations

For samples with noise $e^{(0:T)}$ and $\tilde{e}^{(0:T)}$ we interpolate with noise set to $\sqrt{\alpha}e^{(0:T)} + \sqrt{1-\alpha}\tilde{e}^{(0:T)}$

Noise interpolated samples

Sample interpolations

For samples with noise $e^{(0:T)}$ and $\tilde{e}^{(0:T)}$ we interpolate with noise set to $\sqrt{\alpha}e^{(0:T)} + \sqrt{1-\alpha}\tilde{e}^{(0:T)}$

Learning $p_{\theta}(x)$ [**ProtDiff**]

Sampling $x_S \sim p_{\theta}(x_S \mid x_M)$ [SMCDiff]

Limitations, Related Work, and Future directions

Roadmap

- Diffusion generative modeling background - Adapting diffusion for protein backbones - Model performance and limitations

- Why conditional sampling vs. "naive" in-painting? - Sequential Monte Carlo for exact sampling in the large-compute limit

"A girl hugging a corgi on a pedestal"

Nichol et al. "GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models" (2022)

"A girl hugging a corgi on a pedestal"

Nichol et al. "GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models" (2022)

"A girl hugging a corgi on a pedestal" For protein design, small errors break designability

Nichol et al. "GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models" (2022)

"A girl hugging a corgi on a pedestal"

- For protein design, small errors break designability
- Why does this work at all?

Nichol et al. "GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models" (2022)

"A girl hugging a corgi on a pedestal"

- For protein design, small errors break designability
- Why does this work at all?

<u>Hypothesis</u>: Inpainting approximates conditional sampling. Approximation error —> artifacts.

Nichol et al. "GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models" (2022)

Conditional Sampling to Fix Inpainting?

- Partition structure as $x = [x_M, x_S]$

Motif Scaffold

Conditional Sampling to Fix Inpainting?

Structure space

Motif

Scaffold

- Partition structure as $x = [x_M, x_S]$

Motif Scaffold

Conditional Sampling to Fix Inpainting?

Structure space

Structures with motif **Scaffold**

- Partition structure as $x = [x_M, x_S]$ Motif Scaffold **Our rationale:** Assume 1. $p_{\theta}(x) > 0$ only if x is designable, and 2. $p_{\theta}(x_M^*) > 0$, for motif of interest x_M^* .

Structures with motif **Scaffold**

Conditional Sampling to Fix Inpainting?

- Partition structure as $x = [x_M, x_S]$ Motif Scaffold **Our rationale:** Assume 1. $p_{\theta}(x) > 0$ only if x is designable, and 2. $p_{\theta}(x_M^*) > 0$, for motif of interest x_M^* . Then for any $x_S \sim p_{\theta}(x_S \mid x_M^*)$, $x = [x_M^*, x_S]$ is designable!

Structures with motif **Scaffold**

Conditional Sampling to Fix Inpainting?

- Partition structure as $x = [x_M, x_S]$ Motif Scaffold **Our rationale:** Assume 1. $p_{\theta}(x) > 0$ only if x is designable, and 2. $p_{\theta}(x_M^*) > 0$, for motif of interest x_M^* . Then for any $x_S \sim p_{\theta}(x_S \mid x_M^*)$, $x = [x_M^*, x_S]$ is designable!

Structures with motif **Scaffold**

Conditional Sampling to Fix Inpainting?

- Partition structure as $x = [x_M, x_S]$ Motif Scaffold **Our rationale:** Assume 1. $p_{\theta}(x) > 0$ only if x is designable, and 2. $p_{\theta}(x_M^*) > 0$, for motif of interest x_M^* .

Then for any $x_S \sim p_{\theta}(x_S \mid x_M^*)$, $x = [x_M^*, x_S]$ is designable!

Result: With a good enough $p_{\theta}(x)$, motif-scaffolding \leftrightarrow conditional sampling

Structures with motif Scaffold

Conditional Sampling to Fix Inpainting?

- Partition structure as $x = [x_M, x_S]$ **Scaffold Our rationale:** Assume 1. $p_{\theta}(x) > 0$ only if x is designable, and 2. $p_{\theta}(x_M^*) > 0$, for motif of interest x_M^* .

Then for any $x_S \sim p_{\theta}(x_S \mid x_M^*)$, $x = [x_M^*, x_S]$ is designable!

Result: With a good enough $p_{\theta}(x)$, motif-scaffolding \leftrightarrow conditional sampling

Challenge: How to sample $x_S \sim p_{\theta}(x_S \mid x_M^*)$

Unconditional Sampling: $x^{(t)} \sim p_{\theta}(x^{(t)} | x^{(t+1)})$

Unconditional Sampling: $x^{(t)} \sim p_{\theta}(x^{(t)} | x^{(t+1)})$

- Conditional Sampling:
 - $x_{S}^{(t)} \sim p_{\theta}(x_{S}^{(t)} | x_{S}^{(t+1)}, x_{M}^{(0)})$
- Exact but intractable!

Unconditional Sampling: $x^{(t)} \sim p_{\theta}(x^{(t)} | x^{(t+1)})$

Tractable alternative: Replacement approach [Song 2021, Meng 2021]

reverse replacement sampling $x_S^{(t)} \sim p_{\theta}(x_S^{(t)} | x_S^{(t+1)}, x_M^{(t+1)}) \text{ with } x_M^{(t+1)} \sim q(x_M^{(t+1)} | x_M^0)$ Conditional Sampling:

- $x_{S}^{(t)} \sim p_{\theta}(x_{S}^{(t)} | x_{S}^{(t+1)}, x_{M}^{(0)})$
- Exact but intractable!

forward motif diffusion

Unconditional Sampling: $x^{(t)} \sim p_{\theta}(x^{(t)} | x^{(t+1)})$

 Tractable alternative: Replacement approach [Song 2021, Meng 2021] Motif: x_M forward motif diffusion

reverse replacement sampling $x_{s}^{(t)} \sim p_{\theta}(x_{s}^{(t)} | x_{s}^{(t+1)}, x_{M}^{(t+1)})$ with

Introduces approximation error and leads to chain breaks!

- Conditional Sampling:
 - $x_{s}^{(t)} \sim p_{\theta}(x_{s}^{(t)} | x_{s}^{(t+1)}, x_{M}^{(0)})$
- Exact but intractable!

Scaffold: x_{S}

$$x_M^{(t+1)} \sim q(x_M^{(t+1)} \mid x_M^0)$$

$\begin{array}{l} \mbox{Replacement Method:} \\ x_S^{(t)} \sim p_\theta(x_S^{(t)} \mid x_S^{(t+1)}, x_M^{(t+1)}), \\ \mbox{with } x_M^{(t+1)} \sim q(x_M^{(t+1)} \mid x_M^{(0)}) \end{array} \end{array}$

• Inexact but tractable

Conditional Sampling:

- $x_{S}^{(t)} \sim p_{\theta}(x_{S}^{(t)} | x_{S}^{(t+1)}, x_{M}^{(0)})$
- Exact but intractable!

Replacement Method: $x_{S}^{(t)} \sim p_{\theta}(x_{S}^{(t)} \mid x_{S}^{(t+1)}, x_{M}^{(t+1)}),$ with $x_M^{(t+1)} \sim q(x_M^{(t+1)} \mid x_M^{(0)})$

• Inexact but tractable

Is there something in-between?

Conditional Sampling:

- $x_{S}^{(t)} \sim p_{\theta}(x_{S}^{(t)} | x_{S}^{(t+1)}, x_{M}^{(0)})$
- Exact but intractable!

Replacement Method: $x_{s}^{(t)} \sim p_{\theta}(x_{s}^{(t)} \mid x_{s}^{(t+1)}, x_{M}^{(t+1)}),$

with $x_M^{(t+1)} \sim q(x_M^{(t+1)} \mid x_M^{(0)})$

• Inexact but tractable

Our proposal — Look ahead by a few steps: $x_{c}^{(t)} \sim p_{\theta}(x_{c}^{(t)} \mid x_{c}^{(t+1)}, x_{M}^{(t-1:t+1)}), \text{ with } x_{M}^{(t-1:t+1)} \sim q(x_{M}^{(t-1:t+1)} \mid x_{M}^{(0)})$

- Conditional Sampling:
- Is there something in-between?

- Exact but intractable!

Replacement Method:

 $x_{s}^{(t)} \sim p_{\theta}(x_{s}^{(t)} \mid x_{s}^{(t+1)}, x_{M}^{(t+1)}),$ with $x_M^{(t+1)} \sim q(x_M^{(t+1)} \mid x_M^{(0)})$

• Inexact but tractable

Our proposal — Look ahead by a few steps: $x_{s}^{(t)} \sim p_{\theta}(x_{s}^{(t)} \mid x_{s}^{(t+1)}, x_{M}^{(t-1:t+1)}), \text{ with } x_{M}^{(t-1:t+1)} \sim q(x_{M}^{(t-1:t+1)} \mid x_{M}^{(0)})$

Tractable with a sequential Monte Carlo (SMC) algorithm

Conditional Sampling:

Is there something in-between?

- $x_{\rm S}^{(t)} \sim p_{\theta}(x_{\rm S}^{(t)} | x_{\rm S}^{(t+1)}, x_{\rm M}^{(0)})$
- Exact but intractable!

Replacement Method: $x_{s}^{(t)} \sim p_{\theta}(x_{s}^{(t)} \mid x_{s}^{(t+1)}, x_{M}^{(t+1)}),$ with $x_M^{(t+1)} \sim q(x_M^{(t+1)} \mid x_M^{(0)})$

• Inexact but tractable

Our proposal — Look ahead by a few steps: $x_{c}^{(t)} \sim p_{\theta}(x_{c}^{(t)} \mid x_{c}^{(t+1)}, x_{M}^{(t-1:t+1)}), \text{ with } x_{M}^{(t-1:t+1)} \sim q(x_{M}^{(t-1:t+1)} \mid x_{M}^{(0)})$

Tractable with a sequential Monte Carlo (SMC) algorithm

 $p_{\theta}(x_{\varsigma}^{(t)} \mid x_{\varsigma}^{(t+1)}, x_{M}^{(t-1:t+1)}) \propto p_{\theta}(x_{\varsigma}^{(t)}, x_{M}^{(t-1:t)} \mid x_{\varsigma}^{(t+1)}, x_{M}^{(t+1)})$

Conditional Sampling:

Is there something in-between?

- $x_{s}^{(t)} \sim p_{\theta}(x_{s}^{(t)} | x_{s}^{(t+1)}, x_{M}^{(0)})$
- Exact but intractable!

- (Bayes' rule)

Replacement Method: $x_{s}^{(t)} \sim p_{\theta}(x_{s}^{(t)} \mid x_{s}^{(t+1)}, x_{M}^{(t+1)}),$ with $x_M^{(t+1)} \sim q(x_M^{(t+1)} \mid x_M^{(0)})$

- Inexact but tractable
- **Our proposal** Look ahead by a few steps: $x_{c}^{(t)} \sim p_{\theta}(x_{c}^{(t)} \mid x_{c}^{(t+1)}, x_{M}^{(t-1:t+1)}), \text{ with } x_{M}^{(t-1:t+1)} \sim q(x_{M}^{(t-1:t+1)} \mid x_{M}^{(0)})$
- Tractable with a sequential Monte Carlo (SMC) algorithm

can sample

Conditional Sampling:

Is there something in-between?

- $x_{s}^{(t)} \sim p_{\theta}(x_{s}^{(t)} | x_{s}^{(t+1)}, x_{M}^{(0)})$
- Exact but intractable!

(Bayes' rule) $\propto p_{\theta}(x_{S}^{(t)} \mid x_{S}^{(t-1)}, x_{M}^{(t-1)}) p_{\theta}(x_{M}^{(t-1)} \mid x_{S}^{(t)}, x_{M}^{(t)})$ (Markov structure) can compute

• Forward diffuse motif:

Reverse diffuse K weighted scaffold "particles"

• Forward diffuse motif:

- Reverse diffuse K weighted scaffold "particles"
- **1. Propose scaffolds:** $x_{Sk}^{(t)} \sim p_{\theta}(x_{Sk}^{(t)} | x_{Sk}^{(t+1)}, x_{M}^{(t+1)})$ for k = 1, ..., K

Forward diffuse motif:

- Reverse diffuse K weighted scaffold "particles"
- **1. Propose scaffolds:** $x_{S,k}^{(t)} \sim p_{\theta}(x_{S}^{(t)} | x_{S,k}^{(t+1)}, x_{M}^{(t+1)})$ for k = 1, ..., K
- **2. Re-weight** by looking ahead: $w_k = p_{\theta}(x_M^{(t-1)} | x_M^{(t)}, x_{S_k}^{(t)}), \quad \tilde{w}_k = w_k / \sum w_k$

fold "particles" $(x_M^{(t+1)})$ for k = 1, ..., K $(x_k = p_{\theta}(x_M^{(t-1)} | x_M^{(t)}, x_{S,k}^{(t)}), \quad \tilde{w}_k = w_k / \sum_{k'=1}^K w_k$

Forward diffuse motif:

- Reverse diffuse K weighted scaffold "particles"
- **1. Propose scaffolds:** $x_{Sk}^{(t)} \sim p_{\theta}(x_{Sk}^{(t)} | x_{Sk}^{(t+1)}, x_{M}^{(t+1)})$ for k = 1, ..., K

2. Re-weight by looking ahead: $w_k = p_{\theta}(x_M^{(t-1)} | x_M^{(t)}, x_{S_k}^{(t)}), \quad \tilde{w}_k = w_k / \sum w_k$ k' = 1

3. **Resample** according to weight: $\{x_{S,k}^{(t)}\}_{k=1}^K \sim \text{Multinomial}(\{x_{S,k'}^{(t)}\}, \{\tilde{w}_{k'}\}, K)$

Forward diffuse motif:

- Reverse diffuse K weighted scaffold "particles"
- **1. Propose scaffolds:** $x_{Sk}^{(t)} \sim p_{\theta}(x_{Sk}^{(t)} | x_{Sk}^{(t+1)}, x_{M}^{(t+1)})$ for k = 1, ..., K
- 2. Re-weight by looking ahead: $w_k = p_{\theta}(x_M^{(t-1)} | x_M^{(t)}, x_{S_k}^{(t)}), \quad \tilde{w}_k = w_k / \sum w_k$

3. **Resample** according to weight: $\{x_{S,k}^{(t)}\}_{k=1}^{K} \sim \text{Multinomial}(\{x_{S,k'}^{(t)}\}, \{\tilde{w}_{k'}\}, K)$

k' = 1

Proposition (informal): If $p_{\theta}(x^{(0)}) = q(x^{(0)})$, then $x_{S,k}^{(0)} \xrightarrow[K \to \infty]{d} q(x_S^{(0)} \mid x_M^{(0)})$.

Motif self-consistency

- Similar evaluation as before.
- Also calculate Motif RMSD - Achieving motif RMSD < 1.0A is imperative
 - in motif-scaffolding.
- Criterion for successful scaffolding:
 - motif RMSD < 1.0A
 - -scTM > 0.5

Self-consistency evaluation

Evaluation Setup

- Pick motifs from structures in PDB
- Know at least one solution exists

	5trv	6exz
Base Motif Length	21 res.	20 res.
Length	118 res.	72 res.

Evaluation Setup

- Pick motifs from structures in PDB
- Know at least one solution exists

We test dependence scaffold length

• Provide variable length "pads" of native scaffold

	5trv	6exz
Base Motif Length	21 res.	20 res.
Length	118 res.	72 res.

Evaluation Setup

- Pick motifs from structures in PDB
- Know at least one solution exists

We test dependence scaffold length

• Provide variable length "pads" of native scaffold

	5trv	6exz
Base Motif Length	21 res.	20 res.
Length	118 res.	72 res.

5trv

80^{,8}9

90.99

Evaluation Setup

- Pick motifs from structures in PDB
- Know at least one solution exists

We test dependence scaffold length

• Provide variable length "pads" of native scaffold

	5trv	6exz
Base Motif Length	21 res.	20 res.
Length	118 res.	72 res.

- Sampling method
- fixed
- SMCDiff (Ours)
- replacement

Evaluation Setup

- Pick motifs from structures in PDB
- Know at least one solution exists

We test dependence scaffold length

- Provide variable length "pads" of native scaffold
- On 5trv, SMCDiff builds diverse scaffolds up to 80 residues
 - "Naive" inpainting fails beyond 50 residues

	5trv	6exz
Base Motif Length	21 res.	20 res.
Length	118 res.	72 res.

- Sampling method
- fixed
- SMCDiff (Ours)
- replacement

Evaluation Setup

- Pick motifs from structures in PDB
- Know at least one solution exists

We test dependence scaffold length

- Provide variable length "pads" of native scaffold
- On 5trv, SMCDiff builds diverse scaffolds up to 80 residues
 - "Naive" inpainting fails beyond 50 residues

	5trv	6exz
Base Motif Length	21 res.	20 res.
Length	118 res.	72 res.

- Sampling method
- fixed
- SMCDiff (Ours)
- replacement

Evaluation Setup

- Pick motifs from structures in PDB
- Know at least one solution exists

We test dependence scaffold length

- Provide variable length "pads" of native scaffold
- On 5trv, SMCDiff builds diverse scaffolds up to 80 residues
 - "Naive" inpainting fails beyond 50 residues

50,59

	5trv	6exz
Base Motif Length	21 res.	20 res.
Length	118 res.	72 res.

Respiratory syncytial virus (RSV) neutralizing antibody binds site II and V.

►

[Figure adapted from Wang+ 2022]

RSV known to be difficult to scaffold. Only recently [Wang+2022] successfully scaffolded Site V.

SMCDiff fails to scaffold RSV.

Non-generative motif-scaffolding is "state of the art", but has limitations:

Non-generative motif-scaffolding is "state of the art", but has limitations: • Hallucination: search over on sequence input to AlphaFold

Hallucination [Anishchenko+, 2021; Wang+, 2022]

Non-generative motif-scaffolding is "state of the art", but has limitations:

- Hallucination: search over on sequence input to AlphaFold
 - Susceptible to adversarial examples
 - Compute cost of hours to days with variable success rates

Hallucination [Anishchenko+, 2021; Wang+, 2022]

Non-generative motif-scaffolding is "state of the art", but has limitations:

- Hallucination: search over on sequence input to AlphaFold
 - Susceptible to adversarial examples
 - Compute cost of hours to days with variable success rates
- RosettaFold "Missing information recovery" [Wang+, 2022]: Supervised retraining

Hallucination [Anishchenko+, 2021; Wang+, 2022]

Non-generative motif-scaffolding is "state of the art", but has limitations:

- Hallucination: search over on sequence input to AlphaFold
 - Susceptible to adversarial examples
 - Compute cost of hours to days with variable success rates
- RosettaFold "Missing information recovery" [Wang+, 2022]: Supervised retraining
 - Limited diversity, low performance for >40 residue scaffolds

Hallucination [Anishchenko+, 2021; Wang+, 2022]

Generative models have made recent strides:

Generative models have made recent strides:

• Modeling distance matrices as images [Lin+2021, Anand+2017, Lee+2022]

Generative models have made recent strides:

- - Rely on non-differentiable "folding" as second step

Modeling distance matrices as images [Lin+2021, Anand+2017, Lee+2022]

Generative models have made recent strides:

- Modeling distance matrices as images [Lin+2021, Anand+2017, Lee+2022]
 - Rely on non-differentiable "folding" as second step
- Concurrent work on diffusion in 3D [Anand+2022, Luo+2022]
 - No demonstrations of "unconditional" sampling

ProtDiff + SMCDiff Advantages:

- Unconditional sampling of diverse backbones
- Generative framework allows efficient sampling of diverse scaffolds
- Can scaffold up to 80 residues

ProtDiff + SMCDiff Advantages:

- Unconditional sampling of diverse backbones
- Generative framework allows efficient sampling of diverse scaffolds
- Can scaffold up to 80 residues

ProtDiff Limitations:

- Doesn't yet extend beyond motifs in train set
- Requires pre-specifying scaffold length and motif placement

Conclusions

Diffusion models enable a probabilistic approach to scaffolding motifs • **ProtDiff**, captures a distribution over diverse native backbones SMCDiff, provides accurate conditional samples, and outperforms naive

- inpainting on scaffolding problems

Conclusions

Diffusion models enable a probabilistic approach to scaffolding motifs • **ProtDiff**, captures a distribution over diverse native backbones • **SMCDiff**, provides accurate conditional samples, and outperforms naive

- inpainting on scaffolding problems

Primary Reference: "Diffusion probabilistic modeling of protein backbones in 3D for the motif-scaffolding problem." arXiv preprint arXiv:2206.04119

Contact: Brian Trippe (<u>blt2114@columbia.edu</u>), Jason Yim (<u>jyim@mit.edu</u>)

David Baker

References

- Processing Systems, 2020.
- [Satorras et al.] Victor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E(n) equivariant graph neural networks. International Conference on Machine Learning, 2021.
- molecule generation in 3D. arXiv preprint arXiv:2203.17003, 2022.
- Processing Systems, 2018.
- Gaetano T Montelione, and David Baker. De novo protein design by deep network hallucination. Nature, 2021.
- Deep learning methods for designing proteins scaffolding functional sites. Science, 2022.
- for Molecular Conformation Generation. International Conference on Learning Representations, 2022.
- structures. Machine Learning for Structural Biology Workshop, NeurIPS, 2021.

• [Ho et al.] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in Neural Information

· [Hoogeboom et al.] Emiel Hoogeboom, Victor Garcia Satorras, Clément Vignac, and Max Welling. Equivariant diffusion for

• [Anand et al.] Namrata Anand and Possu Huang. Generative modeling for protein structures. Advances in Neural Information

· [Anishchenko et al.] Ivan Anishchenko, Samuel J Pellock, Tamuka M Chidyausiku, Theresa A Ramelot, Sergey Ovchinnikov, Jingzhou Hao, Khushboo Bafna, Christoffer Norn, Alex Kang, Asim K Bera, Frank DiMaio, Lauren Carter, Cameron M Chow,

· [Wang et al.] Jue Wang, Sidney Lisanza, David Juergens, Doug Tischer, Ivan Anishchenko, Minkyung Baek, Joseph L Watson, Jung Ho Chun, Lukas F Milles, Justas Dauparas, Marc Exposit, Wei Yang, Amijai Saragovi, Sergey Ovchinnikov, and David A. Baker.

• [Xu et al.] Minkai Xu, Lantao Yu, Yang Song, Chence Shi, Stefano Ermon, and Jian Tang. GeoDiff: A Geometric Diffusion Model

· [Lin et al.] Zeming Lin, Tom Sercu, Yann LeCun, and Alexander Rives. Deep generative models create new and diverse protein

· [Song et al.] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole. Scorebased generative modeling through stochastic differential equations. International Conference on Learning Representations, 2021.

• [Meng et al.] Meng, Chenlin, Yutong He, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, and Stefano Ermon. SDEdit: Guided image synthesis and editing with stochastic differential equations. International Conference on Learning Representations, 2021.

