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Diffusion models on protein backbones

Figures/slides borrowed from:
• CVPR 2022 Tutorial: Denoising Diffusion-based Generative Modeling: Foundations and Applications



State-of-the-art
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[Figure from CVPR tutorial]

• Training requires sampling every  

• But this is expensive for large  : 
xt

t q(xt |xt−1) ⋅ q(xt−1 |xt−2)…q(x1 |x0)

•  how much noise is added on each step 
• [Ho et al]: ,  
•  is how much signal is kept.

βt

β0 = 0.0001, βT = 0.2 βt−1 < βt

(1 − βt)
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Reverse denoising process

[Figure from CVPR tutorial]

First sample from  and 
go backwards to 

xT
x0

Sampling is  
 depending on problem. 

Active area of research to speed up 
sampling. 

O(T )
T ∈ [100, 1000]Goal: ≈
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Denoising diffusion probabilistic models

[Figure from CVPR tutorial]

Intuition 
‣ No encoder (replaced with forward diffusion) only need to train decoder (compared to VAEs). 
‣ Decoder is easy to train (compared to GANs) with simple loss that are easy to learn/predict.



ProtDiff: diffusion on protein backbones
Benefits of diffusion on proteins 
‣ Model directly in 3D space instead of distograms. 
‣ Shown state-of-the-art success in generating small molecules [Hoogeboom et al.] and point clouds [Luo et al.]

[Figure from CVPR tutorial]
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-  : zero-centered 3D backbone point clouds. 
- Treats protein as a fully connected graph. 

-  where  is sequence position index of residue   
- Breaks permutation invariance. 

-

xt ∈ ℝN×3

[s1, …, sN] si i

t ∈ [1,…, T]

‣ E(3) Equivariant diffusion model: 
- Goal:  
- Starting from invariant distribution with a equivariant noise 

prediction model leads to equivariant samples. [GeoDiff Xu et 
al.] 

- Distribution is invariant to E(3) but samples are equivariant.

p(x0) = p(Rx0), R ∈ SO(3)

‣ Neural network: 
- E(3) equivariant graph neural network (EGNN) 

[Satorras et al.] 
- Property that Euclidean transforms equally affect output.  

  equivariant noise predictionR ϵθ(x) = ϵθ(Rx) →

Sampling

Rotate

x(T) x(0)

Same protein



Designability criterion

‣ A 3D structure is designable if a protein 
sequence can be found that folds into the 
same 3D structure. 

‣ Use sequence design to search for likely 
sequences for a backbone. 

‣ Use structure prediction (folding) to 
verify backbone samples can be designed 
from a protein sequence. 
- >0.5 TM-score indicates roughly same 

structure.



Self-consistency components

‣ Sequence design: ProteinMPNN 
- State-of-the-art fixed backbone 

sequence design method. 

‣ Structure prediction: AlphaFold2 
- No MSA. No template. Allows for fast 

inference. Only include query sequence. 

- Use released CASP14 weights.

Only Ca distances [Dauparas et al]

[Jumper et al]



Characterization of self-consistency
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‣ Full sampling pipeline:
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structure
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Specific failure mode
‣ The model can generate left-handed helices (in red) 

‣ Chain breaks can occur



Sample interpolations
‣ Noise interpolated samples

For samples with noise we interpolate with noise set to ϵ(0:T) and ϵ̃(0:T) αϵ(0:T) + 1 − αϵ̃(0:T)
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Roadmap

Learning  [ProtDiff] 
- Diffusion generative modeling background 
- Adapting diffusion for protein backbones 
- Model performance and limitations 

Sampling  [SMCDiff] 
- Why conditional sampling vs. “naive” in-painting? 
- Sequential Monte Carlo for exact sampling in the 

large-compute limit 

Limitations, Related Work, and Future 
directions

pθ(x)

xS ∼ pθ(xS ∣ xM)
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Inpainting with Diffusion Models

“A girl hugging a corgi on a pedestal”

Nichol et al. “GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models” (2022)

‣ For protein design, small errors break designability
‣ Why does this work at all?
Hypothesis: Inpainting approximates conditional sampling. 
                      Approximation error —> artifacts.

• Artifacts & edge effects 
in state-of-art inpainting
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Result:  With a good enough  pθ(x),
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Inpainting with Diffusion Models

x(T)
M x(0)

M⋯ ⋯ ==
x(0)

Sx(T)
S

x(t) ∼ pθ(x(t) |x(t+1))
Unconditional Sampling:

x(t)
S ∼ pθ(x(t)

S |x(t+1)
S , x(0)

M )
Conditional Sampling:

Motif: xM

Scaffold: xS

forward motif diffusion

reverse replacement sampling

x(t)
S ∼ pθ(x(t)

S |x(t+1)
S , x(t+1)

M ) with x(t+1)
M ∼ q(x(t+1)

M ∣ x0
M)

• Exact but intractable!
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Motif self-consistency

‣ Similar evaluation as before. 

‣ Also calculate Motif RMSD 
- Achieving motif RMSD < 1.0A is imperative 

in motif-scaffolding. 

‣ Criterion for successful scaffolding: 
- motif RMSD < 1.0A 
- scTM > 0.5
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Failure case: RSV

Respiratory syncytial virus (RSV) neutralizing antibody binds site II and V.
‣ RSV known to be difficult to scaffold. Only recently 

[Wang+2022] successfully scaffolded Site V. 

‣ SMCDiff fails to scaffold RSV.

[Figure adapted from Wang+ 2022]
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Hallucination [Anishchenko+, 2021; Wang+, 2022]

AlphaFold

Non-generative motif-scaffolding is “state of the art”, but has limitations:
• Hallucination: search over on sequence input to AlphaFold

- Susceptible to adversarial examples
- Compute cost of hours to days with variable success rates 

• RosettaFold “Missing information recovery” [Wang+, 2022]: Supervised 
retraining
- Limited diversity, low performance for >40 residue scaffolds

Related work on motif-scaffolding & generative modeling
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Related work on motif-scaffolding & generative modeling
Generative models have made recent strides:

• Modeling distance matrices as images [Lin+2021, Anand+2017, Lee+2022] 
- Rely on non-differentiable “folding” as second step

• Concurrent work on diffusion in 3D [Anand+2022, Luo+2022]
- No demonstrations of “unconditional” sampling

Anand+2022 Luo+2022
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ProtDiff + SMCDiff Advantages:
• Unconditional sampling of diverse backbones 
• Generative framework allows efficient sampling of diverse scaffolds 
• Can scaffold up to 80 residues

ProtDiff Limitations:
• Doesn’t yet extend beyond motifs in train set 
• Requires pre-specifying scaffold length and motif placement



Conclusions
Diffusion models enable a probabilistic approach to scaffolding motifs 
‣ ProtDiff, captures a distribution over diverse native backbones 
‣ SMCDiff, provides accurate conditional samples, and outperforms naive 

inpainting on scaffolding problems



Conclusions
Diffusion models enable a probabilistic approach to scaffolding motifs 
‣ ProtDiff, captures a distribution over diverse native backbones 
‣ SMCDiff, provides accurate conditional samples, and outperforms naive 

inpainting on scaffolding problems

Primary Reference: "Diffusion probabilistic modeling of protein backbones 
in 3D for the motif-scaffolding problem." arXiv preprint arXiv:2206.04119  
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