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Unsupervised Learning as Inference on Partitions

Example: Cluster cells based on gene expression [1]
How large are the clusters (cell types)?

Which cells are of the same type?
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Challenge: MCMC takes a long time! Computional Redistricting

Goal: Use computational parallelism to accelerate MCMC (MIT Tech. Review)

This work: Optimal transport couplings make this possible 1/9




Roadmap

. Parallelizing MCMC with Couplings:

- Background & Notation
- The Label Switching Problem

- We Frame Gibbs Sampling as Markov

Chain on Partitions

Our Optimal Transport Coupling

. Big-O Analysis Demonstrates Fast

Computation

- Improved Estimation Error and Intervals

with OTC over Nailve Parallelism in
Practice
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Set-up & challenge of burn-in bias:
« Want to compute H* = [ h(X)py(X)dX
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How do we apply this to clustering problems?
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Unbiased MCMC Set-Up Estimate (1 per processor)
Use coupled chains such that ‘ h(XT/)’ + ‘Z§=T’+1 h(X,) — h(Yt—l)’
1. Yt b Xt ' '
2. Y =X fort>1 Usual MCMC Bias
estimate correction

Choices for Clustering Applications:
* Transition kernel for X; = Gibbs
* Coupling that meets quickly

- large T = high variance

- not addressed by existing work!

Challenge: the “label-switching” problem S ™
Equivalent re-labelings impede mixing La‘beliﬁg 1 Labeling o
- slow meeting

Key idea: Develop a coupling that is agnostic to the labeling 3/9
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Our OT coupling meets quickly by avoiding label-switching

Coupling meeting-time
OT vs. label-based

Single-cell clustering — Dirichlet

process mixture model
 Run many pairs of coupled
chains = compute meeting

Meeting-time
survival function 19-2 -

time distribution (lower is better) —— CommonRNG
* Consider label-based couplings: —— Maximal
- Common RNG (Gibbs, 2004) — T
- Maximal coupling (Jerrum, 1998) . L
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Chain on Partitions

Our Optimal Transport Coupling

. Big-O Analysis Demonstrates Fast

Computation

- Improved Estimation Error and

Intervals with OTC over Naive
Parallelism in Practice
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* If coupling is too time intensive, we might prefer single chains
* Naive computation of dyamming(+) 20WN %) time (let alone OT problem)

We show: can compute coupling in O(K?log K) amortized time!
* K: # of clusters --- typically fixed or O(log N)

* Bottleneck : Orlin’s algorithm in OT problem (but fast in practice)
 Compute cost dominated by marginal kernel in practice

Additional challenge: Higher variance than single chains
- How many processors are needed?

- Previous works do not compare to naive use of parallelism
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OT-Couplings can be more precise than Naive parallelism

* Coupled chains: aggregate estimates from multiple pairs of chains
* Naive parallelism (baseline): average (biased) estimates from single chains

Single-cell clustering (largest component proportion) Graph Coloring
simple mean trimmed mean trimmed mean
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* Further improvement with robust estimators (clipping outliers) 219
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Conclusions

. : Coupling Choice Intervals
OT vs. Naive Parallelism 100 4 P1ng ~
L S = 0354,
2 —>é= Coupled Chains = 4
2 20 —>¢é=Naive Parallelism = + 1T VT -
) = B =z
8 < 10771 5 0.30{(]
c 10 A > = CommonRNG S
v AR o > —— Maximal E
0 0 9000 101 10° 10000 20000
Number of Processes Meeting Time (Sweeps) Number of Processes
« High accuracy via parallelism ¢ OT avoids label-switching * Intervals with coverage

Contact: tdn@mit.edu, btrippe@mit.edu, tamarab@mit.edu
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